首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
Most of the current analytical methods depend largely on laboratory-based analytical techniques that require expensive and bullky equipment,potentially incur costly testing,and involve lengthy detection processes.With increasing requirements for point-of-care testing(POCT),more attention has been paid to miniaturized analytical devices.Miniaturized electrochemical(MEC)sensors,including different material-based MEC sensors(such as DNA-,paper-,and screen electrode-based),have been in strong demand in analytical science due to their easy operation,portability,high sensitivity,as well as their short analysis time.They have been applied for the detection of trace amounts of target through measuring changes in electrochemical signal,such as current,voltage,potential,or impedance,due to the oxidation/reduction of chemical/biological molecules with the help of electrodes and electrochemical units.MEC sensors present great potential for the detection of targets including small organic molecules,metal ions,and biomolecules.In recent years,MEC sensors have been broadly applied to POCT in various fields,including health care,food safety,and environmental monitoring,owing to the excellent advantages of electrochemical(EC)technologies.This review summarized the state-of-the-art advancements on various types of MEC sensors and their applications in POCT.Furthermore,the future perspectives,opportunities,and challenges in this field are also discussed.  相似文献   

2.
有中学化学参考资料题:0.10 mol/L的NH4Cl和(NH4)2SO4溶液哪个pH值高?这似乎是个中学生可做的简单题目,仔细考虑不是如此.如果简单地认为盐酸和硫酸都是强酸,而硫酸是二元酸,硫酸铵溶液中铵盐浓度为0.20 mol/L,那么NH4Cl溶液pH高,那是不妥的.硫酸是二元酸,第一个氢离子能完全电离,第二个氢离子部分电离,如此考虑情况怎么样呢?是不是答案发生变化?这要通过计算来说明.  相似文献   

3.
Feng Pan 《结构化学》2020,39(1):7-10
Machine learning is an emerging method to discover new materials with specific characteristics.An unsupervised machine learning research is highlighted to discover new potential lithium ionic conductors by screening and clustering lithium compounds,providing inspirations for the development of solid-state electrolytes and practical batteries.  相似文献   

4.
The conversion efficiencies reported for Tin(Sn)halide-based perovskite solar cells(PSCs)fall a large gap behind those of lead halide-based PSCs,mainly because of poor film quality of the former.Here we report an efficient strategy based on a simple secondary crystallization growth(SCG)technique to improve film quality for tin halide-based PSCs by applying a series of functional amine chlorides on the perovskite surface.They were discovered to enhance the film crystallinity and suppress the oxidation of Sn2+remarkably,hence reduce trap state density and non-irradiative recombination in the absorber films.Furthermore,the SCG film holds the band levels matching better with carrier transport layers and herein favoring charge extraction at the device interfaces.Consequently,a champion device efficiency of 8.07% was achieved alo ng with significant enhancements in VOC and JSC,in contrast to 5.35% of the control device value.Moreover,the SCG film-based devices also exhibit superior stability comparing with the control one.This work explicitly paves a novel and general strategy for developing high performance lead-free PSCs.  相似文献   

5.
Designing defect-engineered semiconductor heterojunctions can effectively promote the charge carrier separation.Herein,novel ceria(CeO2) quantum dots(QDs) decorated sulfur-doped carbon nitride nanotubes(SCN NTs) were synthesized via a thermal polycondensation coupled in situ depositionprecipitation method without use of template or surfactant.The structure and morphology studies indicate that ultrafine CeO2 QDs are well distributed inside and outside of SCN NTs offering highly dispersed active sites and a large contact interface between two components.This leads to the promoted formation of rich Ce3+ ion and oxygen vacancies as confirmed by XPS.The photocatalytic performance can be facilely modulated by the content of CeO2 QDs introduced in SCN matrix while bare CeO2 does not show activity of hydrogen production.The optimal catalyst with 10% of CeO2 loading yields a hydrogen evolution rate of 2923.8 μmol h-1 g-1 under visible light,remarkably higher than that of bare SCN and their physical mixtures.Further studies reveal that the abundant surface defects and the created 0 D/1 D junctions play a critical role in improving the separation and transfer of charge carriers,leading to superior solar hydrogen production and good stability.  相似文献   

6.
The demand on low-carbon emission fabrication technologies for energy storage materials is increasing dramatically with the global interest on carbon neutrality.As a promising active material for metal-sulfur batteries,sulfur is of great interest due to its high-energy-density and abundance.However,there is a lack of industry-friendly and low-carbon fabrication strategies for high-performance sulfur-based active particles,which,however,is in critical need by their practical success.Herein,based on a hail-inspired sulfur nano-storm(HSN)technology developed in our lab,we report an energy-saving,solvent-free strategy for producing core-shell sulfur/carbon electrode particles(CNT@AC-S)in minutes.The fabrication of the CNT@AC-S electrode particles only involves low-cost sulfur blocks,commercial carbon nanotubes(CNT)and activated carbon(AC)micro-particles with high specific surface area.Based on the above core-shell CNT@AC-S particles,sulfur cathode with a high sulfur-loading of 9.2 mg cm-2 delivers a stable area capacity of 6.6 mAh cm-2 over 100 cycles.Furthermore,even for sulfur cathode with a super-high sulfur content(72 wt%over the whole electrode),it still delivers a high area capacity of 9 mAh cm-2 over50 cycles in a quasi-lean electrolyte condition.In a nutshell,this study brings a green and industryfriendly fabrication strategy for cost-effective production of rationally designed S-rich electrode particles.  相似文献   

7.
Transition metal selenides have been widely studied as anode materials of sodium ion batteries(SIBs),however,the investigation of solid-electrolyte-interface(SEI)on these materials,which is critical to the electrochemical performance of SIBs,remains at its infancy.Here in this paper,ZnSe@C nanoparticles were prepared from ZIF-8 and the SEI layers on these electrodes with and without reduced graphene oxide(rGO)layers were examined in details by X-ray photoelectron spectroscopies at varied charged/discharged states.It is observed that fast and complicated electrolyte decomposition reactions on ZnSe@C leads to quite thick SEI film and intercalation of solvated sodium ions through such thick SEI film results in slow ion diffusion kinetics and unstable electrode structure.However,the presence of rGO could efficiently suppress the decomposition of electrolyte,thus thin and stable SEI film was formed.ZnSe@C electrodes wrapped by rGO demonstrates enhanced interfacial charge transfer kinetics and high electrochemical performance,a capacity retention of 96.4%,after 1000 cycles at 5 A/g.This study might offer a simple avenue for the designing high performance anode materials through manipulation of SEI film.  相似文献   

8.
CXN天然沸石的研究2: 吸附性质   总被引:3,自引:0,他引:3  
李军  邱瑾  龙英才 《化学学报》2000,58(8):988-991
采用N~2,NH~3,CO~2,乙烯,丙烯,水,甲醇,乙醇,丙醇等作为吸附剂,研究了由我国CXN天然沸石改性制得的H-STI和Na-STI沸石的吸附性质,H-STI和Na-STI沸石的BET表面积及微孔孔体积约为420m^2/g和0.20m^3/g。根据NH~3和CO~2在H-STI沸石上的吸附等温线计算得到它们的吸附热分别为44.8和26.5kJ/mol。乙烯,丙烯,甲醇,乙醇,丙醇等在Na-STI沸石上的吸附等温线表明该沸石对有机分子的吸附具有链长选择性。在低分压下水相对于甲醇的吸附量表明沸石具有一定的疏水性质。  相似文献   

9.
常温常湿条件下Au/MeO~x催化剂上CO氧化性能   总被引:12,自引:0,他引:12  
王桂英  张文祥  蒋大振  吴通好 《化学学报》2000,58(12):1557-1562
利用共沉淀法制备了Au/MeO~x催化剂(Me=Al,Co,Cr,Cu,Fe,Mn,Ni,Zn)。在常温常湿条件下,考察了不同氧化物负载的金基催化剂的CO氧化性能。结果表明,氧化物种类对催化剂的活性和稳定性均有较大的影响。Cu,Mn,Cr等氧化物负载的金基催化剂的活性较差,而Zn,Fe,Co,Ni,Al等金属氧化物负载的金基催化剂可将CO完全氧化,又具有一定的稳定性,在相同反应条件下,CO完全转化时的稳定性顺序为Au/ZnO>Au/α-Fe~2O~3>Au/Co~3O~4>Au/γ-Al~2O~3≈Au/NiO。还发现水对Au/MnO~x催化剂的活性和稳定性有负作用,而对180℃焙烧制备的Au/ZnO-180催化剂的活性和稳定性均有明显的湿度增强作用。  相似文献   

10.
Mixed cation and anion based perovskites solar cells exhibited enhanced stability under outdoor conditions,however,it yielded limited power conversion efficiency when TiO2 and Spiro-OMeTAD were employed as electron and hole transport layer(ETL/HTL)respectively.The inevitable interfacial recombination of charge carriers at ETL/perovskite and perovskite/HTL interface diminished the efficiency in planar(n-i-p)perovskite solar cells.By employing computational approach for uni-dimensional device simulator,the effect of band offset on charge recombination at both interfaces was investigated.We noted that it acquired cliff structure when the conduction band minimum of the ETL was lower than that of the perovskite,and thus maximized interfacial recombination.However,if the conduction band minimum of ETL is higher than perovskite,a spike structure is formed,which improve the performance of solar cell.An optimum value of conduction band offset allows to reach performance of 25.21%,with an open circuit voltage(VOC)of 1231 mV,a current density JSC of 24.57 mA/cm2 and a fill factor of 83.28%.Additionally,we found that beyond the optimum offset value,large spike structure could decrease the performance.With an optimized energy level of Spiro-OMeTAD and the thickness of mixed-perovskite layer performance of 26.56% can be attained.Our results demonstrate a detailed understanding about the energy level tuning between the charge selective layers and perovskite and how the improvement in PV performance can be achieved by adjusting the energy level offset.  相似文献   

11.
本文采用ReaxFF MD方法对一种较新的RP-3四组分替代燃料模型的高温氧化过程进行了研究。利用作者所在课题组研发的独特分析工具VARxMD,对燃烧过程中主要物种(燃料分子、O2、C2H4、·CH3)随时间和温度的演变规律及其化学反应进行了系统分析。ReaxFF MD模拟得到的燃料和氧气消耗量、乙烯和甲基自由基的生成量与相同温度和初始压力条件下CHEMKIN的计算结果处于同一量级,同时获得了详细的物质结构信息和反应列表。进一步对模拟得到的反应机理形式进行观察后发现,模拟获得的机理形式与文献中的描述一致。对燃料分子第一步反应数量的统计发现,其类型主要为攫氢反应和分子内断裂反应,且后者占主导;燃料分子第一步反应数量的统计也定性展现了不同燃烧条件下各类反应发生的可能性。对氧元素相关的反应分析发现,氧分子和C1-C3小分子发生的反应所占比例较大,能在一定程度上为机理简化提供有益线索。在对反应机理分析的基础上获得了RP-3四组分替代燃料体系高温氧化过程的化学反应网络。我们认为,ReaxFF MD反应分子动力学模拟、结合VARxMD对模拟结果深入分析的方法是有潜力系统认识燃料氧化反应机理的新方法,对构建燃料的燃烧反应机理库有一定的帮助。  相似文献   

12.
典型烟煤热解机理的反应动力学模拟   总被引:1,自引:0,他引:1  
建立合理有效的烟煤大分子模型,采用基于反应力场(Reactive Force Field,ReaxFF)的分子动力学方法模拟1400-2600 K典型烟煤的热解过程,得出产物分布和中间自由基的演变历程。研究表明,随着热解温度的升高,焦炭产量先增加后降低,焦油产量的变化趋势与焦炭相反,热解气产量单调增加。煤在低温下热解主要发生一次反应,生成焦油自由基碎片和小分子气体;高温下焦油碎片的二次反应显著,生成含量较多但数量较少的焦炭及含量与数量较多的小分子气体。2000 K是一次反应向二次反应的温度转折点。在高温热解时,煤中的C与H逐渐迁移到焦炭和焦油中,而含氧官能团较为活跃,O逐渐迁移到热解气中。二次反应阶段,O最活泼,H次之,C最稳定。热解过程中最先产生的气体是H2O;NH3主要来源于二次反应;H2S在二次反应阶段被消耗转化为其他产物;H2产量最多,且随热解温度升高而增加,尤其在二次反应中大量生成,主要源于裂解产生的氢自由基碰撞和芳香结构的缩合。基于ReaxFF模拟结果得到煤热解失重活化能为39.45 kJ/mol。  相似文献   

13.
任春醒  李晓霞  郭力 《物理化学学报》2018,34(10):1151-1162
为探究固相CL-20热分解反应机理,本文采用反应分子动力学ReaxFF MD模拟研究了含有128个CL-20分子的超胞模型在800–3000 K温度下的热分解过程。借助作者所在课题组研发的反应分析及可视化工具VARxMD得到了热分解过程中多种反应中间物和较为全面的反应路径。氮氧化物是CL-20初始分解的主要中间产物,其中NO2是数量最多的初始分解产物,观察到的中间物NO3的生成量仅次于NO2。统计CL-20初始分解的所有反应后发现,在所有考察温度下CL-20初始分解路径主要是N―NO2断裂反应和C―N键断裂引起开环的单分子反应路径。N―NO2断裂反应数量在高温下显著增多,而C―N键断裂引起的开环反应数量随温度升高变化不大。在低温热分解模拟中还观察到CL-20初始分解阶段生成的NO2会发生双分子反应—从CL-20分子中夺氧生成NO3。对CL-20热分解过程中环结构演化进行分析后发现,CL-20分解的早期反应中间物主要为具有3元或2元稠环结构的吡嗪衍生物,随后它们会分解形成单环吡嗪。吡嗪六元环结构在热分解过程中非常稳定,这一模拟结果支持Py-GC/MS实验中提出吡嗪存在的结论。CL-20中的咪唑五元环结构相对不稳定,在热分解过程中会发生开环分解而较早消失。由ReaxFF MD模拟得到的3000 K高温热分解产物N2,H2O,CO2和H2的数量与爆轰实验的测量结果定量吻合。本文获得的对CL-20热分解机理的认识表明ReaxFF MD结合VARxMD有可能为深入了解热刺激下含能材料复杂化学过程提供一种有前景的方法。  相似文献   

14.
本文采用基于ReaxFF反应力场的分子动力学方法(ReaxFF MD),利用自主研发的国际首个基于GPU加速的ReaxFF MD程序系统GMD-Reax和独特的化学反应分析工具VARx MD,探索臭氧氧化对硝基苯酚的反应机理。通过模拟考察了300 K恒温条件下臭氧氧化水中对硝基苯酚的行为,获得了酚结构开环、CO_2生成、主要自由基(·OH、·O_2、·O)及团簇型自由基的数量演变趋势,并可定性描述六元环开环和CO_2生成均遵循伪一级反应动力学规律。反应机理分析表明酚类分子在水溶液中被臭氧氧化的路径主要经过攫氢、六元环开环、碳链的氧化分解三个阶段,也揭示了自由基和团簇型自由基在臭氧降解对硝基苯酚时所发挥的重要作用。本工作是应用ReaxFF MD分子模拟方法对常温水环境下臭氧降解酚类污染物反应机理研究的一个尝试,可为深入认识该机理及相关的实验、理论研究提供一定的参考。  相似文献   

15.
Thermal cracking of n-decane and n-decane in the presence of several fuel additives are studied in order to improve the rate of thermal cracking by using reactive molecular dynamics (MD) simulations employing the ReaxFF reactive force field. From MD simulations, we find the initiation mechanisms of pyrolysis of n-decane are mainly through two pathways: (1) the cleavage of a C-C bond to form smaller hydrocarbon radicals, and (2) the dehydrogenation reaction to form an H radical and the corresponding decyl radical. Another pathway is the H-abstraction reactions by small radicals including H, CH(3), and C(2)H(5). The basic reaction mechanisms are in good agreement with existing chemical kinetic models of thermal decomposition of n-decane. Quantum mechanical calculations of reaction enthalpies demonstrate that the H-abstraction channel is easier compared with the direct C-C or C-H bond-breaking in n-decane. The thermal cracking of n-decane with several additives is further investigated. ReaxFF MD simulations lead to reasonable Arrhenius parameters compared with experimental results based on first-order kinetic analysis. The different chemical structures of the fuel additives greatly affect the apparent activation energy and pre-exponential factors. The presence of diethyl ether (DEE), methyl tert-butyl ether (MTBE), 1-nitropropane (NP), 3,6,9-triethyl-3,6,9-trimethyl-1,2,4,5,7,8-hexaoxonane (TEMPO), triethylamine (TEA), and diacetonediperodixe (DADP) exhibit remarkable promoting effect on the thermal cracking rates, compared with that of pure n-decane, in the following order: NP > TEMPO > DADP > DEE (~MTBE) > TEA, which coincides with experimental results. These results demonstrate that reactive MD simulations can be used to screen for fuel additives and provide useful information for more comprehensive chemical kinetic model studies at the molecular level.  相似文献   

16.
Detailed formaldehyde adsorption and dissociation reactions on Fe(100) surface were studied using first principle calculations and molecular dynamics (MD) simulations, and results were compared with available experimental data. The study includes formaldehyde, formyl radical (HCO), and CO adsorption and dissociation energy calculations on the surface, adsorbate vibrational frequency calculations, density of states analysis of clean and adsorbed surfaces, complete potential energy diagram construction from formaldehyde to atomic carbon (C), hydrogen (H), and oxygen (O), simulation of formaldehyde adsorption and dissociation reaction on the surface using reactive force field, ReaxFF MD, and reaction rate calculations of adsorbates using transition state theory (TST). Formaldehyde and HCO were adsorbed most strongly at the hollow (fourfold) site. Adsorption energies ranged from ?22.9 to ?33.9 kcal/mol for formaldehyde, and from ?44.3 to ?66.3 kcal/mol for HCO, depending on adsorption sites and molecular direction. The dissociation energies were investigated for the dissociation paths: formaldehyde → HCO + H, HCO → H + CO, and CO → C + O, and the calculated energies were 11.0, 4.1, and 26.3 kcal/mol, respectively. ReaxFF MD simulation results were compared with experimental surface analysis using high resolution electron energy loss spectrometry (HREELS) and TST based reaction rates. ReaxFF simulation showed less reactivity than HREELS observation at 310 and 523 K. ReaxFF simulation showed more reactivity than the TST based rate for formaldehyde dissociation and less reactivity than TST based rate for HCO dissociation at 523 K. TST‐based rates are consistent with HREELS observation. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Reactive molecular dynamics (MD) simulation is performed using a reactive force field (ReaxFF). To this end, we developed a new method to optimize the ReaxFF parameters based on a machine learning approach. This approach combines the k-nearest neighbor and random forest regressor algorithm to efficiently locate several possible ReaxFF parameter sets. As a pilot test of the developed approach, the optimized ReaxFF parameter set was applied to perform chemical vapor deposition (CVD) of an α-Al2O3 crystal. The crystal structure of α-Al2O3 was reasonably reproduced even at a relatively high temperature (2000 K). The reactive MD simulation suggests that the (110) surface grows faster than the (0001) surface, indicating that the developed parameter optimization technique could be used for understanding the chemical reaction in the CVD process. © 2019 Wiley Periodicals, Inc.  相似文献   

18.
To study the initial chemical events related to the detonation of triacetonetriperoxide (TATP), we have performed a series of molecular dynamics (MD) simulations. In these simulations we used the ReaxFF reactive force field, which we have extended to reproduce the quantum mechanics (QM)-derived relative energies of the reactants, products, intermediates, and transition states related to the TATP unimolecular decomposition. We find excellent agreement between the QM-predicted reaction products and those observed from 100 independent ReaxFF unimolecular MD cookoff simulations. Furthermore, the primary reaction products and average initiation temperature observed in these 100 independent unimolecular cookoff simulations match closely with those observed from a TATP condensed-phase cookoff simulation, indicating that unimolecular decomposition dominates the thermal initiation of the TATP condensed phase. Our simulations demonstrate that thermal initiation of condensed-phase TATP is entropy-driven (rather than enthalpy-driven), since the initial reaction (which mainly leads to the formation of acetone, O(2), and several unstable C(3)H(6)O(2) isomers) is almost energy-neutral. The O(2) generated in the initiation steps is subsequently utilized in exothermic secondary reactions, leading finally to formation of water and a wide range of small hydrocarbons, acids, aldehydes, ketones, ethers, and alcohols.  相似文献   

19.
20.
垃圾衍生燃料等温快速热解和燃烧反应特性   总被引:4,自引:4,他引:4  
利用热天平和管式炉对RDF(Refuse Derived Fuel)等温快速热解和燃烧反应特性进行了研究。实验发现,在等温快速升温的条件下,RDF热解和燃烧的反应速率都非常快,从受热开始到反应结束需60 s~80 s;从开始失重到完成反应为20 s。RDF热解和燃烧热重反应曲线非常类似,都只有一个反应失重区;RDF组成对其燃烧和热解反应性有重要影响,含有橡胶的RDF的热解和燃烧反应速率较小。在650 ℃~800 ℃RDF快速热解产物中气、液产物的产率可达80%~90%,而固体产物的产率只有10%~20%,热解气体的热值为20kJ/m3,RDF较适合进行热解处理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号