首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A software program was developed to enable the quantification of the complex 3D-data sets as produced by GC×GC. Using this software, it was demonstrated that the detectability limit of GC×GC in our study is 18 times better than that of ‘normal’ capillary gas chromatography (CGC). This enhancement is due to the signal increase produced by the thermal modulation effect. The relative standard deviation of 0.9% as measured on a test mixture was excellent. Furthermore, a comparison was made for the group-type separation of heavy gas oils between the hyphenation of LC and GC (LC-GC) and GC×GC. Although these separations are different in nature, the agreement of the results of both methods was very good. The results of GC×GC may even be more accurate, since, different from CGC, even in the most complex chromatograms the baseline in the second dimension chromatograms is always present.  相似文献   

2.
The analysis of organic biomarkers in chert samples offers key information about the environmental conditions in which these samples were formed, and this information can be used to track the lithic materials of many archaeological artifacts. Since the content of the organic fraction is very low and the complexity of the organic extracts is quite high, we have optimized the GC×GC separation of these mixtures. Making use of mixture of C(16)H(34)-C(44)H(90)n-alkane standards, a central composite design was carried out taking into account the carrier flow in the first and second columns, the modulation period and the discharge time. Regarding the measured responses, though the initially considered one was the peak volume, we have also evaluated the effects on the number of modulated peaks per analyte, the symmetry of the modulated peaks and the number of detected compounds. The final optimum conditions were defined as follows: a hydrogen flow of 1.2 mL/min in the first column and 18 mL/min in the second one, a modulation period of 1.4 s and a discharge time of 0.1 s and under these conditions all the response variables showed optimum values. Based on this optimized method several chert samples obtained from different stratigraphic levels in an ancient quarry were studied and we were able to distinguish them on the basis of the different constituents of organic biomarkers, such as mono-methylated alkanes, cyclic n-alkanes, branched alkanes, steranes and hopanes.  相似文献   

3.
Summary Headspace solid-phase micro-extraction (HS SPME), comprehensive two-dimensional GC (GC×GC), and flame ionization detection (FID) have been examined for their suitability and compatibility for rapid sampling, separation, and detection of garlic flavour volatiles. This approach (HS-SPME-GC×GC-FID) is distinctly superior to use of one-dimensional GC, i. e., HS-SPME-GC-FID. Direct comparison of the experimental results showed that a 10–50-fold increase in sensitivity is obtained, separating power is substantially enhanced, and the peak capacity is up to ten times higher. As a consequence, much more detailed flavour analysis can be performed; this results in better information about the aroma-active compounds.  相似文献   

4.
Comprehensive two-dimensional gas chromatography (GC×GC) has been applied to the quantitative analysis of benzene, toluene, ethylbenzene, xylenes (BTEX), and all heavier aromatic compounds in gasoline. The two-dimensional chromatographic separation used volatility selection on the first-dimension column and polarity selection on the second-dimension column. In the resulting GC×GC chromatogram, aromatic species were resolved from other compound classes. Moreover, structurally related aromatics were grouped in a manner that facilitated identification and integration. The response of a flame ionization detector to each major aromatic group in gasoline was calibrated using internal standards. Quantitation produced results directly comparable with ASTM standard methods. The present GC×GC method can be expanded to analyze other gasoline components.  相似文献   

5.
Comprehensive two-dimensional gas chromatography coupled with mass spectrometric detection (GC × GC/MS) is a three-dimensional analytical method. In its application to petroleum analysis, the high peak capacity of GC × GC produced chromatographic resolution of over 750 peaks from a marine diesel fuel. The MS detector provided a full-scan mass spectrum for each resolved peak. The integration of an MS detector with GC × GC provides increased capability to identify minor components, determine members of homologous series, and characterize ordered peak patterns of related components that are visible in the GC × GC chromatogram.  相似文献   

6.
Comprehensive two‐dimensional gas chromatography (GC×GC) is an utterly suitable separation technique for the analysis of complex samples, such as oil fractions. Once the two columns and the operating conditions are properly tuned, the technique is able to provide a detailed characterization of such materials. Some considerations applying to the tuning of a GC×GC system for a specific separation are presented and discussed. The authors present a number of different column sets and conditions which allow the separation of a non‐aromatic hydrocarbon solvent, a kerosene, the light end of a crude oil, and an olefinic fraction, respectively. The highly structured GC×GC chromatograms, together with chemical knowledge about the samples, provide a much more comprehensive characterization of the samples than hitherto possible.  相似文献   

7.
Comprehensive gas chromatography (GC) has emerged in recent years as the technique of choice for the analysis of volatile and semivolatile compounds in complex matrices. Coupling it with high‐resolution mass spectrometry (MS) makes a powerful tool for identification and quantification of organic compounds. The results obtained in this study showed a significant improvement by using GC×GC‐EI‐MS in comparison with GC‐EI‐MS; the separation of chromatogram peaks was highly improved, which facilitated detection and identification. However, the limitation of Orbitrap mass analyzer compared with time‐of‐flight analyzer is the data acquisition rate; the frequency average was about 25 Hz at a mass resolving power of 15.000, which is barely sufficient for the proper reconstruction of the narrowest chromatographic peaks. On the other hand, the different spectra obtained in this study showed an average mass accuracy of about 1 ppm. Within this average mass accuracy, some reasonable elemental compositions can be proposed and combined with characteristic fragment ions, and the molecules can be identified with precision. At a mass resolving power of 7.500, the scan rate reaches 43 Hz and the GC×GC‐MS peaks can be represented by more than 10 data points, which should be sufficient for quantification. The GC×GC‐MS was also applied to analyze a cellulose bio‐oil sample. Following this, a highly resolved chromatogram was obtained, allowing EI mass spectra containing molecular and fragment ions of many distinct molecules present in the sample to be identified.  相似文献   

8.
Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOFMS) was used for the characterization of aromatic compounds present in extra heavy gas oil (EHGO) from Brazil. Individual identification of EHGO compounds was successfully achieved in addition to group-type separation on the chromatographic plane. Many aromatic hydrocarbons, especially polycyclic aromatic hydrocarbons and sulfur compounds, were detected and identified, such as chrysenes, phenanthrenes, perylenes, benzonaphthothiophenes and alkylbenzonaphthothiophenes. In addition, triaromatic steroids, methyl-triaromatic steroids, tetrahydrochrysenes and tetraromatic pentacyclic compounds were present in the EHGO aromatic fractions. Considering the roof-tile effect observed for many of these compound classes and the high number of individual compounds identified, GC×GC-TOFMS is an excellent technique to characterize the molecular composition of the aromatic fraction from EHGO samples. Moreover, data processing allowed the quantification of aromatic compounds, in class and individually, using external standards. EHGO data were obtained in μgg(-1), e.g., benzo[a]pyrene were in the range 351 to 1164μgg(-1). Thus, GC×GC-TOFMS was successfully applied in EHGO quantitative analysis.  相似文献   

9.
Considering the global energetic context, diversifying fuels is of growing importance and many new alternatives are promising. Coal liquefaction products definitely appear among the new generation substitutes. These product's characteristics are very far from fuel specifications as they are mainly composed of naphthenes, aromatics, polycondensed naphthenic and aromatic structures and heteroatomic compounds (nitrogen and oxygen), with a very low paraffin content. Identification and quantification of oxygen-containing species in coal-derived liquids are of considerable importance to understand their behaviors in further processing. However, these species have not been characterized as fully as the predominant hydrocarbon components. Literature shows that these compounds consist mainly in alkylated phenolic and furanic structures. Therefore, comprehensive two-dimensional gas chromatography has been investigated to provide enhanced molecular characterization of these complex samples. Several different configurations involving innovative column configurations were tested. Each of them was optimized by testing different column lengths, modulation periods, and oven conditions. A comparison of the contribution of each column configuration was carried out regarding four main criteria: individual separation of oxygenates, group type separation, resolution, and space occupation. One of them enabled an outstanding separation of paraffins, naphthenes, monoaromatics, diaromatics and targeted O-compounds in a direct coal liquefaction product. It was therefore subjected to further experimentations using a time-of-flight mass spectrometer to validate the identification and unravel more than fifty oxygenated molecular structures. A group-type quantification was also established for four column arrangements and gives the distribution of paraffins, naphthenes and aromatics. It can be concluded from this study that a non-orthogonal arrangement involving a highly polar column in the first dimension was the most adapted one.  相似文献   

10.
A multiplexed dual-secondary column comprehensive two-dimensional gas chromatography approach (GC × 2GC) designed for complex sample analysis is introduced. The approach splits the first-dimension column effluent into two second-dimension columns with different stationary phases, and recombines the two streams into one detector post-separation. The approach produces two single two-dimensional chromatograms for each injection. Careful manipulation of thermal modulator timing parameters combined with a novel contra-directional modulation regime facilitates this approach. A selection of 34 laboratory reference compounds containing n-alkanes, alcohols, aromatic hydrocarbons, ketones, esters and halogenated hydrocarbons were analysed to demonstrate the approach. The dual two-dimensional chromatogram from this single detector system provides complementary information due to the unique selectivity of the three separation columns. The results of this proof-of-principle investigation provide significant impetus for further development of GC × 2GC–MS methodology.  相似文献   

11.
The estimation of physicochemical parameters such as distillation points and relative densities still plays an important role in the quality control of gasoline and similar fuels. Their measurements according to standard ASTM procedures demands specific equipments and are time and work consuming. An alternative method to predict distillation points and relativity density by multivariate analysis of comprehensive two-dimensional gas chromatography with flame ionization detection (GC×GC-FID) data is presented here. Gasoline samples, previously tested according to standard methods, were used to build regression models, which were evaluated by external validation. The models for distillation points were built using variable selection methods, while the model for relativity density was built using the whole chromatograms. The root mean square prediction differences (RMSPD) obtained were 0.85%, 0.48%, 1.07% and 1.71% for 10, 50 and 90% v/v of distillation and for the final point of distillation, respectively. For relative density, the RMSPD was 0.24%. These results suggest that GC×GC-FID combined with multivariate analysis can be used to predict these physicochemical properties of gasoline.  相似文献   

12.
The chemometric method referred to as the generalized rank annihilation method (GRAM) is used to improve the precision, accuracy, and resolution of comprehensive two‐dimensional gas chromatography (GC×GC) data. Because GC×GC signals follow a bilinear structure, GC×GC signals can be readily extracted from noise by chemometric techniques such as GRAM. This resulting improvement in signal‐to‐noise ratio (S/N) and detectability is referred to as bilinear signal enhancement. Here, GRAM uses bilinear signal enhancement on both resolved and unresolved GC×GC peaks that initially have a low S/N in the original GC×GC data. In this work, the chemometric method of GRAM is compared to two traditional peak integration methods for quantifying GC×GC analyte signals. One integration method uses a threshold to determine the signal of a peak of interest. With this integration method only those data points above the limit of detection and within a selected area are integrated to produce the total analyte signal for calibration and quantification. The other integration method evaluated did not employ a threshold, and simply summed all the data points in a selected region to obtain a total analyte signal. Substantial improvements in quantification precision, accuracy, and limit of detection are obtained by using GRAM, as compared to when either peak integration method is applied. In addition, the GRAM results are found to be more accurate than results obtained by peak integration, because GRAM more effectively corrects for the slight baseline offset remaining after the background subtraction of data. In the case of a 2.7‐ppm propylbenzene synthetic sample the quantification result with GRAM is 2.6 times more precise and 4.2 times more accurate than the integration method without a threshold, and 18 times more accurate than the integration method with a threshold. The limit of detection for propylbenzene was 0.6 ppm (parts per million by mass) using GRAM, without implementing any sample preconcentration prior to injection. GRAM is also demonstrated as a means to resolve overlapped signals, while enhancing the S/N. Four alkyl benzene signals of low S/N which were not resolved by GC×GC are mathematically resolved and quantified.  相似文献   

13.
Coal is a non renewable fossil fuel, used mainly as a source of electrical energy and in the production of coke. It is subjected to thermal treatment, pyrolysis, which produces coke as a main product, in addition to a condensed liquid by-product, called tar. Tar is a complex mixture of organic compounds which contains different chemical classes, presenting aromatic and sulphur heterocyclic compounds. In general, identification of these compounds requires steps of isolation and fractionation, mainly due to co-elution of these compounds with polyaromatic hydrocarbons (PAH). The objective of this work is to characterize the sulphur compounds present in the coal tar obtained via pyrolysis, using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry detector (GC×GC/TOFMS). Coal samples from the State of Paraná, Brazil were subjected to laboratorial scale pyrolysis. Several experimental conditions were tested, such as sample weight (5, 10 and 15g), heating ramp (10, 25 and 100°C/min) and final temperature (500, 700 and 900°C). Samples were analyzed by one dimensional gas chromatography (1D-GC) coupled to a quadrupole mass spectrometry detector (GC/qMS) and two-dimensional gas chromatography with time-of-flight mass spectrometry detector (GC×GC/TOFMS). The higher amount of sulphur compounds was obtained at a final temperature of 700°C and a heating ramp of 100°C/min. The main classes observed in the color plot were thiophenes, benzothiophenes and alkylated dibenzothiophenes. GC×GC/TOFMS allowed the identification of the greater number of compounds and the separation of several sulphur compounds from one another. Moreover, separation of sulphur compounds from polyaromatic hydrocarbons and phenols was achieved, which was not possible by 1D-GC. Comparing GC×GC/TOFMS and 1D-GC (SIM mode) also showed that 1D-GC, one of the most employed quantification tools for sulphur compounds, can be misleading for detection, identification and quantification, as the number of isomers of sulphur compounds found was greater than theoretically possible.  相似文献   

14.
An on-line coupling of size-exclusion Chromatography (SEC), normal-phase liquid Chromatography (NPLC), and gas Chromatography (GC) for the characterization of complex hydrocarbon mixtures is described. The hyphenated system separates according to size, polarity, and boiling point. The use of size exclusion as the first separation step allows for the direct injection of complex (“dirty”) samples withont prior clean-up. SEC-NPLC coupling was realized using an on-line solvent evaporator based on fully concurrent solvent evaporation (FCSE) using a modified loop-type interface, vapor exit and co-solvent trapping. Complete reconcentration of the analytes was realized by the introduction of a cryogenic cold trap. For the subsequent hydrocarbon group-type separation an ammo-silica column with n-heptane as eluent was used. The NPLC-GC coupling was based on an on-column interface using partially concurrent solvent evaporation (PCSE) and an early vapor exit. Initial results obtained on the analysis of a residue from the atmospheric crude-oil distillation (a so-called long residue) are presented as an example of the enormous separation power of the SEC-NPLC-GC system. The application of the system for quantitative analysis has not yet been studied.  相似文献   

15.
Reichenbach SE  Tian X  Tao Q  Ledford EB  Wu Z  Fiehn O 《Talanta》2011,83(4):1279-1288
This paper describes informatics for cross-sample analysis with comprehensive two-dimensional gas chromatography (GCxGC) and high-resolution mass spectrometry (HRMS). GCxGC-HRMS analysis produces large data sets that are rich with information, but highly complex. The size of the data and volume of information requires automated processing for comprehensive cross-sample analysis, but the complexity poses a challenge for developing robust methods. The approach developed here analyzes GCxGC-HRMS data from multiple samples to extract a feature template that comprehensively captures the pattern of peaks detected in the retention-times plane. Then, for each sample chromatogram, the template is geometrically transformed to align with the detected peak pattern and generate a set of feature measurements for cross-sample analyses such as sample classification and biomarker discovery. The approach avoids the intractable problem of comprehensive peak matching by using a few reliable peaks for alignment and peak-based retention-plane windows to define comprehensive features that can be reliably matched for cross-sample analysis. The informatics are demonstrated with a set of 18 samples from breast-cancer tumors, each from different individuals, six each for Grades 1-3. The features allow classification that matches grading by a cancer pathologist with 78% success in leave-one-out cross-validation experiments. The HRMS signatures of the features of interest can be examined for determining elemental compositions and identifying compounds.  相似文献   

16.
Combining qualitative data from the chromatographic structure of 2-D gas chromatography with flame ionization detection (GC×GC-FID) and that from gas chromatography-mass spectrometry (GC/MS) should result in a more accurate assignment of the peak identities than the simple analysis by GC/MS, where coelution of analytes is unavoidable in highly complex samples (rendering spectra unsuitable for qualitative purposes) or for compounds in very low concentrations. Using data from GC×GC-FID combined with GC/MS can reveal coelutions that were not detected by mass spectra deconvolution software. In addition, some compounds can be identified according to the structure of the GC×GC-FID chromatogram. In this article, the volatile fractions of fresh and dehydrated pineapple pulp were evaluated. The extraction of the volatiles was performed by dynamic headspace extraction coupled to solid-phase microextraction (DHS-SPME), a technique appropriate for slurries or solid matrices. Extracted analytes were then analyzed by GC×GC-FID and GC/MS. The results obtained using both techniques were combined to improve compound identifications.  相似文献   

17.
The analysis of Bulgarian and Turkish Rosa damascena Miller essential oils was performed by flow‐modulated comprehensive two‐dimensional gas chromatography using simultaneous detection of the second column effluent by flame ionization and quadrupole mass spectrometric detection. Enantioselective separations were obtained by running the samples on 2,3‐di‐O‐ethyl‐6‐Otert‐butyldimethylsilyl‐β‐cyclodextrin column as the first column and on polyethylene glycol as the second column. The determination of enantiomeric or diastereomeric excess of some terpenoic solutes is a possible route for quality or authenticity control as well as for the elucidation of the country of origin.  相似文献   

18.
Three commercially available chiral capillary columns, Chirasil-Dex, BGB-176SE, and BGB-172, have been evaluated for the separation into enantiomers of the 19 chiral polychlorinated biphenyls (PCB) congeners stable at room temperature. The enantiomers of 15 chiral PCBs were, at least to some extent, separated using these beta-cyclodextrin based columns. Multidimensional techniques, such as heart-cut multi-dimensional gas chromatography (heart-cut MDGC) and comprehensive two-dimensional gas chromatography (GC x GC), were investigated for their ability to solve coelution problems with other PCBs present in commercial mixtures and real-life samples. Heart-cut MDGC improved the separation as compared to one-dimensional GC, and enantiomeric fractions of the investigated chiral PCBs could be determined free from interferences. However, limitations on the number of target compounds that can be transferred to the second column in a single run and, therefore, the time consumption, have led to the evaluation of GC x GC as an alternative for this type of analysis. With GC x GC, two column set-ups were tested, both having a chiral column as first-dimension column, and two different polar stationary phase columns in the second dimension. On using both column combinations, congeners 84, 91, 95, 132, 135, 136, 149, 174, and 176 could be determined free from coelutions with other PCBs. Results on the application of heart-cut MDGC to food samples such as milk and cheese are given, as well as the first results on the application of GC x GC to this type of samples.  相似文献   

19.
20.
This article discusses the application of comprehensive two-dimensional gas chromatography (GC x GC) to samples derived from petrochemicals. The use of GC x GC for characterization of petroleum and petroleum derivatives, through group type analysis, such as benzene, toluene, ethylbenzene, xylenes (BTEX), total aromatic hydrocarbons, polyaromatic hydrocarbons, and heteroatomic sulfur-, oxygen-, and nitrogen-containing compounds is presented. The capability of GC x GC to provide additional chemical-specific information regarding petroleum-processing steps, such as linear alkanes dehydrogenation, Fischer-Tropsch process, hydrogenation and oligomerization, is also described. In addition, GC x GC analyses of petrochemical biomarkers and environmental petrochemical-derived pollutants are reported. The role of comparison of samples through use of simple fingerprint approaches is highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号