首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examine stability of fully developed isothermal unidirectional plane Poiseuille–Couette flows of an incompressible fluid whose viscosity depends linearly on the pressure as previously considered in Hron et al. [J. Hron, J. Málek, K.R. Rajagopal, Simple flows of fluids with pressure-dependent viscosities, Proc. R. Soc. Lond. A 457 (2001) 1603–1622] and Suslov and Tran [S.A. Suslov, T.D. Tran, Revisiting plane Couette–Poiseuille flows of a piezo-viscous fluid, J. Non-Newtonian Fluid Mech. 154 (2008) 170–178]. Stability results for a piezo-viscous fluid are compared with those for a Newtonian fluid with constant viscosity. We show that piezo-viscous effects generally lead to stabilisation of a primary flow when the applied pressure gradient is increased. We also show that the flow becomes less stable as the pressure and therefore the fluid viscosity decrease downstream. These features drastically distinguish flows of a piezo-viscous fluid from those of its constant-viscosity counterpart. At the same time the increase in the boundary velocity results in a flow stabilisation which is similar to that observed in Newtonian fluids with constant viscosity.  相似文献   

2.
We numerically solve the time-dependent planar Poiseuille flow of a Johnson–Segalman fluid with added Newtonian viscosity. We consider the case where the shear stress/shear rate curve exhibits a maximum and a minimum at steady state. Beyond a critical volumetric flow rate, there exist infinite piecewise smooth solutions, in addition to the standard smooth one for the velocity. The corresponding stress components are characterized by jump discontinuities, the number of which may be more than one. Beyond a second critical volumetric flow rate, no smooth solutions exist. In agreement with linear stability analysis, the numerical calculations show that the steady-state solutions are unstable only if a part of the velocity profile corresponds to the negative-slope regime of the standard steady-state shear stress/shear rate curve. The time-dependent solutions are always bounded and converge to different stable steady states, depending on the initial perturbation. The asymptotic steady-state velocity solution obtained in start-up flow is smooth for volumetric flow rates less than the second critical value and piecewise smooth with only one kink otherwise. No selection mechanism was observed either for the final shear stress at the wall or for the location of the kink. No periodic solutions have been found for values of the dimensionless solvent viscosity as low as 0.01.  相似文献   

3.
4.
5.
A particular pressure-driven flow in a plane channel is considered, in which one of the walls moves with a constant speed that makes the mean shear rate and the friction at the moving wall vanish. The Reynolds number considered based on the friction velocity at the stationary wall (uτ,S) and half the channel height (h) is Reτ,S = 180. The resulting mean velocity increases monotonically from the stationary to the moving wall and exhibits a substantial logarithmic region. Conventional near-wall streaks are observed only near the stationary wall, whereas the turbulence in the vicinity of the shear-free moving wall is qualitatively different from typical near-wall turbulence. Large-scale-structures (LSS) dominate in the center region and their spanwise spacing increases almost linearly from about 2.3 to 4.2 channel half-heights at this Reτ,S. The presence of LSS adds to the transport of turbulent kinetic energy from the core region towards the moving wall where the energy production is negligible. Energy is supplied to this particular flow only by the driving pressure gradient and the wall motion enhances this energy input from the mean flow. About half of the supplied mechanical energy is directly lost by viscous dissipation whereas the other half is first converted from mean-flow energy to turbulent kinetic energy and thereafter dissipated.  相似文献   

6.
Numerical simulation of Poiseuille flow of liquid Argon in a nanochannel using the non-equilibrium molecular dynamics simulation (NEMD) is performed. The nanochannel is a three-dimensional rectangular prism geometry where the concerned numbers of Argon atoms are 2,700, 2,550 and 2,400 at 102, 108 and 120 K. Poiseuille flow is simulated by embedding the fluid particles in a uniform force field. An external driving force, ranging from 1 to 11 PN (Pico Newton), is applied along the flow direction to inlet fluid particles during the simulation. To obtain a more uniform temperature distribution across the channel, local thermostating near the wall are used. Also, the effect of other mixing rules (Lorenthz–Berthelot and Waldman–Kugler rules) on the interface structure are examined by comparing the density profiles near the liquid/solid interfaces for wall temperatures 108 and 133 K for an external force of 7 PN. Using Kong and Waldman–Kugler rules, the molecules near the solid walls were more randomly distributed compared to Lorenthz–Berthelot rule. These mean that the attraction between solid–fluid atoms was weakened by using Kong rule and Waldman–Kugler rule rather than the Lorenthz–Berthelot rule. Also, results show that the mean axial velocity has symmetrical distribution near the channel centerline and an increase in external driving force can increase maximum and average velocity values of fluid. Furthermore, the slip length and slip velocity are functions of the driving forces and they show an arising trend with an increase in inlet driving force and no slip boundary condition is satisfied at very low external force (<1 PN).  相似文献   

7.
Analytical solutions of Couette–Poiseuille flow of Bingham fluids between two porous parallel plates are derived. This study extends the work of Tsangaris et al. [S. Tsangaris, C. Nikas, G. Tsangaris, P. Neofytou, Couette flow of a Bingham plastic in a channel with equally porous parallel walls, J. Non-Newtonian Fluid Mech. 144 (2007) 42–48] to a general situation where the slip effect at the porous walls is considered. It is found that the form of the flow inside the channel depends not only on the Bingham number Bn, the Couette number Co (related to the moving wall) and the transverse Reynolds number Re, but also on the slip parameter Cs at the porous walls. In both the CoRe diagram and the CoBn diagram, the region where plug flow appears enlarges as the slip effect increases, especially in the case where Co is negative. In the case where plug flow and double shear flow coexist, the transverse position of the plug flow and the shear rate at the boundaries exhibit two opposite behaviors when Cs increases, depending on the value of the other three dimensionless numbers. In other cases, slippage always weakens the shearing deformation of the flow.  相似文献   

8.
An approximate analytical solution is derived for the Couette–Poiseuille flow of a nonlinear viscoelastic fluid obeying the Giesekus constitutive equation between parallel plates for the case where the upper plate moves at constant velocity, and the lower one is at rest. Validity of this approximation is examined by comparison to the exact solution during a parametric study. The influence of Deborah number (De) and Giesekus model parameter (α) on the velocity profile, normal stress, and friction factor are investigated. Results show strong effects of viscoelastic parameters on velocity profile and normal stress. In addition, five velocity profile types were obtained for different values of α, De, and the dimensionless pressure gradient (G).  相似文献   

9.
We show how to formulate two-point boundary value problems to compute laminar channel, tube, and Taylor–Couette flow profiles for some complex viscoelastic fluid models of differential type. The models examined herein are the Pom-Pom Model [McLeish and Larson 42:81–110, (1998)] the Pompon Model [Öttinger 40:317–321, (2001)] and the Two Coupled Maxwell Modes Model (Beris and Edwards 1994). For the two-mode Upper-Convected Maxwell Model, we calculate analytical solutions for the three flow geometries and use the solutions to validate the numerical methodology. We illustrate how to calculate the velocity, pressure, conformation tensor, backbone orientation tensor, backbone stretch, and extra stress profiles for various models. For the Pom-Pom Model, we find that the two-point boundary value problem is numerically unstable, which is due to the aphysical non-monotonic shear stress vs shear rate prediction of the model. For the other two models, we compute laminar flow profiles over a wide range of pressure drops and inner cylinder velocities. The volumetric flow rate and the nonlinear viscoelastic material properties on the boundaries of the flow geometries are determined as functions of the applied pressure drop, allowing easy analysis of experimentally measurable quantities.  相似文献   

10.
We consider the inertialess planar channel flow of a White–Metzner (WM) fluid having a power-law viscosity with exponent n. The case n = 1 corresponds to an upper-convected Maxwell (UCM) fluid. We explore the linear stability of such a flow to perturbations of wavelength k−1. We find numerically that if n < nc  0.3 there is an instability to disturbances having wavelength comparable with the channel width. For n close to nc, this is the only unstable disturbance. For even smaller n, several unstable modes appear, and very short waves become unstable and have the largest growth rate. If n exceeds nc, all disturbances are linearly stable. We consider asymptotically both the long-wave limit which is stable for all n, and the short-wave limit for which waves grow or decay at a finite rate independent of k for each n.The mechanism of this elastic shear-thinning instability is discussed.  相似文献   

11.
A study is carried out for the flow of viscoelastic fluid contained between a stationary inner sphere and a rotating outer sphere. A sequence of flow transitions that is unique to viscoelastic fluids is observed in the experiments. It is found that a `traveling cell', with roll-cell-like characteristics, is generated in the polar region, and then propagates toward the equatorial region when a dimensionless parameter (a measure of strength of the elasticity against the shear viscosity) is increased. In order to investigate the structure and mechanism of the traveling cell, a numerical analysis is performed using a constitutive equation of the Giesekus model. Results of the numerical simulation revealed that the elasticity of the fluid strongly influences the flow in the polar region, where the inertia effect of the outer sphere rotation is minimal, destabilizing the flow forming a pair of weak vortices at the polar region. It was further shown that the pair travel toward the equatorial region in a different manner depending upon the speed of rotation.  相似文献   

12.
In the present work, turbulent flow in the annulus of a counter-rotating Taylor-Couette (CRTC) system is studied using large-eddy simulation. The numerical methodology employed is validated, for both the mean and second-order statistics, with the direct numerical simulation (DNS) data available in the literature, for a range of Reynolds numbers from 500 to 4000. Thereafter, turbulent flow occurring in this system at Reynolds numbers of 8000 and 16000 are studied, and the results obtained are analyzed using mean and second-order statistics, vortical structures, velocity vector plots and power energy spectra. Further, the spatio-temporal variation of azimuthal velocity, extracted near the inner cylinder, shows the existence of herringbone like patterns similar to that observed in the previous studies. The effect of eccentricity of the inner cylinder with respect to the outer cylinder is studied, on the turbulent flow in the CRTC system, for two different eccentricity ratios of 0.2 and 0.5 and for two different Reynolds numbers of 1500 and 4000. The results of the eccentric CRTC are analyzed using contours of pressure, mean and second-order statistics, velocity vectors, vortical structures, and turbulence anisotropy maps. It is observed from the eccentric CRTC simulations that the smaller-gap region seems to contain higher amplitude fluctuations and more vortical structures when compared with the larger-gap region. The mean turbulent kinetic energy contours do not change qualitatively with the Reynolds number, however, quantitatively a higher turbulent kinetic energy is observed in the higher Reynolds number case of 4000.  相似文献   

13.
We solve the time-dependent simple shear flow of a Johnson–Segalman fluid with added Newtonian viscosity. We focus on the case where the steady-state shear stress/shear rate curve is not monotonic. We show that, in addition to the standard smooth linear solution for the velocity, there exists, in a certain range of the velocity of the moving plate, an uncountable infinity of steady-state solutions in which the velocity is piecewise linear, the shear stress is constant and the other stress components are characterized by jump discontinuities. The stability of the steady-state solutions is investigated numerically. In agreement with linear stability analysis, it is shown that steady-state solutions are unstable only if the slope of a linear velocity segment is in the negative-slope regime of the shear stress/shear rate curve. The time-dependent solutions are always bounded and converge to a stable steady state. The number of the discontinuity points and the final value of the shear stress depend on the initial perturbation. No regimes of self-sustained oscillations have been found.  相似文献   

14.
The effect of an axial flow on the stability of the Taylor–Couette flow is explored for pseudoplastic fluids. The fluid is assumed to follow the Carreau–Bird model and mixed boundary conditions are imposed while the axial flow can be independent of rotational flow. The four-dimensional low-order dynamical system, resulted from Galerkin projection of the conservation of mass and momentum equations, includes additional non-linear terms in the velocity components originated from the shear-dependent viscosity. In absence of axial flow the base flow loses its radial flow stability to the vortex structure at a lower critical Taylor number, as the pseudoplasticity effects increases. The emergence of the vortices corresponds to the onset of a supercritical bifurcation which is also seen in the flow of a linear fluid. However, unlike the Newtonian case, pseudoplastic Taylor vortices lose their stability as the Taylor number reaches a second critical number corresponding to the onset of a Hopf bifurcation. Existence of an axial flow, induced by a pressure gradient appears to further advance each critical point on the bifurcation diagram. Complete flow field together with viscosity maps are given for stability regions in the bifurcation diagram.  相似文献   

15.
We present an investigation of the phenomenon of stress-induced polymer migration for dilute polymer solutions in the Taylor–Couette device, consisting of two infinitely long, concentric cylinders rotating at constant angular velocities. The underlying physical model is represented by the dilute limit of a two-fluid Hamiltonian system involving two components: one (the polymer) is viscoelastic and obeys the Oldroyd-B constitutive equation, and the other (the solvent) is viscous Newtonian. The two components are considered to be in thermal, but not mechanical equilibrium, interacting with each other through an isotropic drag coefficient tensor. This allows for stress-induced diffusion of polymer chains. The governing equations consist of the continuity and the momentum equations for the bulk velocity, the constitutive model for the polymer chain conformation tensor and the diffusion equation for the polymer concentration. The diffusion equation contains an extra source term, which is proportional to gradients in the polymer stress, so that polymer concentration gradients can develop even in the absence of externally imposed fluxes in the presence of stress inhomogeneities. The solution to the steady-state purely azimuthal flow is obtained first using a spectral collocation method and an adaptive mesh formulation to track the steep changes of the concentration in the flow domain. The calculations show the development of strong polymer migration towards the inner cylinder with increasing Deborah number (De) in agreement with experimental observations. The migration is enhanced for increasing values of the gap thickness resulting in concentration changes by several orders of magnitude in the area between the inner and outer cylinder walls. The extent of the migration also depends strongly on the ratio of the solvent to the polymer viscosity. In addition to a strongly inhomogeneous polymer concentration, significant deviations from the homogenous flow are also observed in the velocity profile. Next, results are reported from a linear stability analysis around the steady-state solution against axisymmetric disturbances corresponding to various wavenumbers in the axial direction. The calculations show that the steady-state solution remains stable up to moderate values of the Deborah number, explaining why some of the predicted stress-induced migration effects should be experimentally observable. The role of the Peclet number (Pe) on the stability of the system is elucidated.  相似文献   

16.
The non-Newtonian fluid flow with a free surface occurring during the filling of a plane channel in the gravity field is modeled. The mathematical formulation of the problem using the rheological Bulkley–Herschel model is presented. A numerical finite-difference algorithm for solving this problem is developed. A parametric investigation of the main characteristics of the process as functions of the control parameters is performed. The effect of the rheological parameters of the fluid on the distribution of the quasisolid motion zones is demonstrated.  相似文献   

17.
A computational model for an unsteady onedimensional gas–liquid flow taking into account gravity is proposed. The model includes the Zuber–Findlay relation and solutions of the Cauchy problem close to the solutions of drift models. It is shown that the effect of attached mass has a significant influence on the acoustic characteristics of the system of equations.  相似文献   

18.
Experimental results concerning the stability of Couette flow of ferrofluids under magnetic field influence are presented. The fluid cell of the Taylor–Couette system is subject to a homogeneous axial magnetic field and the axial flow profiles are measured by ultrasound Doppler velocimetry. It has been found that an axial magnetic field stabilizes the Couette flow. This effect decreases with a rotating outer cylinder. Moreover, it could be observed that lower axial wave numbers are more stable at a higher axial magnetic field strength. Since the used ferrofluid shows a negligible particle–particle interaction, the observed effects are considered to be solely based on the hindrance of free particle rotation.  相似文献   

19.
This article examines the extensional flow and viscosity and the converging–diverging geometry as the basis of the peculiar viscoelastic behavior in porous media. The modified Bautista–Manero model, which successfully describes elasticity, thixotropic time dependency and shear-thinning, was used for modeling the flow of viscoelastic materials which also show thixotropic attributes. An algorithm, originally proposed by Philippe Tardy, that employs this model to simulate steady-state time-dependent flow was implemented in a non-Newtonian flow simulation code using pore-scale modeling. The simulation results using two topologically-complex networks confirmed the importance of the extensional flow and converging–diverging geometry on the behavior of non-Newtonian fluids in porous media. The analysis also identified a number of correct trends (qualitative and quantitative) and revealed the effect of various fluid and flow parameters on the flow process. The impact of some numerical parameters was also assessed and verified.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号