首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differential scanning calorimetry (DSC) and cryomicroscopy were employed to investigate the glass transition and enthalpy relaxation behaviors of ethylene glycol (EG) and its aqueous solution (50% EG) with different crystallization percent. Isothermal crystallization method was used in devitrification region to get different crystallinity after samples quenched below glass transition temperature. The DSC thermograms upon warming showed that the pure EG has a single glass transition, while the 50% EG solution has two if the solution crystallized partially. It is believed that the lower temperature transition represents the glass transition of bulk amorphous phase of EG aqueous solution glass state, while the higher one is related to ice inclusions, whose mobility is restricted by ice crystal. Cryomicroscopic observation indicated that the EG crystal has regular shape while the ice crystal in 50% EG aqueous solution glass matrix has no regular surface. Isothermal annealing experiments at temperatures lower than Tg were also conducted on these amorphous samples in DSC, and the results showed that both the two amorphous phases presented in 50% EG experience enthalpy relaxation. The relaxation process of restricted amorphous phase is more sensitive to annealing temperature.  相似文献   

2.
Isothermal-isobaric molecular dynamics simulations are used to calculate the specific volume of models of different amorphous carbohydrates (glucose, sucrose, and trehalose) as a function of temperature. Plots of specific volume vs temperature exhibit a characteristic change in slope when the amorphous systems change from the glassy to the rubbery state. The intersection of the regression lines of data below (glassy state) and above (rubbery state) the change in slope provides the glass transition temperature (T(g)). These predicted glass transition temperatures are compared to experimental T(g) values as obtained from differential scanning calorimetry measurements. As expected, the predicted values are systematically higher than the experimental ones (about 12-34 K) as the cooling rates of the modeling methods are about a factor of 10(12) faster. Nevertheless, the calculated trend of T(g) values agrees exactly with the experimental trend: T(g)(glucose) < T(g)(sucrose) < T(g)(trehalose). Furthermore, the relative differences between the glass transition temperatures were also computed precisely, implying that atomistic molecular dynamics simulations can reproduce trends of T(g) values in amorphous carbohydrates with high quality.  相似文献   

3.
Confined liquids can have properties that are poorly predicted from bulk parameters. We resolve with 0.5 nm resolution the nanoscale perturbations that interfaces cause on fluidity, in thin 3-methylpentane (3MP) films. The films of glassy 3MP are much less viscous at the vacuum-liquid interface and much more viscous at the 3MP-metal interface, compared to the bulk of the film. We find that the viscosity at the interfaces continuously returns to the bulk value over about a 3 nm distance. The amorphous 3MP films are constructed using molecular beam epitaxy on a Pt(111) substrate at low temperatures (<30 K). Ions are gently inserted at specific distances from the substrate with a 1 eV hydronium (D(3)O(+)) or Cs(+) ion beam. The voltage across the film, which is directly proportional to the position of the ions within the film, is monitored electrostatically as the film is heated at a rate of 0.2 K/s. Above the bulk glass transition temperature (T(g)) of 3MP (77 K), the ions are expected to begin to move down through the film. However, ion movement is observed at temperatures as low as 50 K near the vacuum interface, well below the bulk T(g). The fitted kinetics predict that at 85 K, the glass is about 6 orders of magnitude less viscous near the free interface compared to that of the bulk.  相似文献   

4.
Summary: Semi crystalline and amorphous poly(lactic acid) (PLA) thin films exhibit different glass transition temperature and behaviour, as revealed by ellipsometry. For semi-crystalline poly(L-lactic acid) (PLLA) thin film (with crystalline content between 40 and 60%), the glass transition temperature (Tg) is found to decrease below a film thickness of 50 nm. This depression was interpreted in term of disentenglement effect which is likely to occur upon confining the amorphous PLA phase near a non interacting surface. New results performed on non completed films, i.e. isolated objects, also reveal the lower transition temperature, thus underlying the importance of the entanglement state of the polymer chains on their mobility. For amorphous PLA thin film, obtained from the L and D copolymer, two distinct glass transitions were observed, with the highest Tg attributed to the presence of some nano-phase domains, formed by a possible cooperation of the D and L blocks to form stereocomplexes sequences, within the film. Furthermore, if these Tg remained constant as film thicknesses decrease down to 50 nm, they were also found to slightly decrease for isolated objects, thus supporting the importance of the entanglement hypothesis on the glass transition.  相似文献   

5.
The interaction of methanol (MeOH) with amorphous solid water (ASW) composed of D2O molecules, prepared at 125 K on a polycrystalline Ag substrate, was studied with metastable-impact-electron spectroscopy, reflection-absorption infrared spectroscopy, and temperature-programmed desorption mass spectroscopy. In connection with the experiments, classical molecular dynamics (MD) simulations have been performed on a single CH3OH molecule adsorbed at the ice surface (T=190 K), providing further insights into the binding and adsorption properties of the molecule at the ice surface. Consistently with the experimental deductions and previous studies, MeOH is found to adsorb with the hydroxyl group pointing toward dangling bonds of the ice surface, the CH3 group being oriented upwards, slightly tilted with respect to the surface normal. It forms the toplayer up to the onset of the simultaneous desorption of D2O and MeOH. At low coverage the adsorption is dominated by the formation of two strong hydrogen bonds as evidenced by the MD results. During the buildup of the first methanol layer on top of an ASW film the MeOH-MeOH interaction via hydrogen-bond formation becomes of importance as well. The interaction of D2O with solid methanol films and the codeposition of MeOH and D2O were also investigated experimentally; these experiments showed that D2O molecules supplied to a solid methanol film become embedded into the film.  相似文献   

6.
An optical photobleaching technique has been used to measure the reorientation of dilute probes in freestanding polystyrene films as thin as 14 nm. Temperature-ramping and isothermal anisotropy measurements reveal the existence of two subsets of probe molecules with different dynamics. While the slow subset shows bulk-like dynamics, the more mobile subset reorients within a few hundred seconds even at T(g,DSC) - 25 K (T(g,DSC) is the glass transition temperature of bulk polystyrene). At T(g,DSC) - 5 K, the mobility of these two subsets differs by 4 orders of magnitude. These data are interpreted as indicating the presence of a high-mobility layer at the film surface whose thickness is independent of polymer molecular weight and total film thickness. The thickness of the mobile surface layer increases with temperature and equals 7 nm at T(g,DSC).  相似文献   

7.
不同结晶度的乙二醇及其水溶液玻璃化转变与焓松弛   总被引:7,自引:0,他引:7  
为了考察晶体成分对无定形成分玻璃化转变和结构松弛行为的影响,利用差示扫描量热法(DSC),结合低温显微技术,研究了乙二醇(EG)及其50%水溶液在不同结晶度时的玻璃化转变和焓松弛行为.采用等温结晶方法控制骤冷的部分结晶玻璃体中的晶体份额.DSC结果表明,对于部分结晶的EG,只有单一的玻璃化转变过程,而对于50%EG,当结晶度不同时,不同程度地表现出两次玻璃化转变(无定形相Ⅰ和无定形相Ⅱ).相Ⅰ的玻璃化转变温度和完全无定形态的含水EG的玻璃化转变温度相一致;相Ⅱ的玻璃化转变温度要比此温度约高6 ℃.低温显微观察结果印证了DSC实验结果.DSC等温退火的实验和KWW(Kohlrausch-Williams-Watts)衰变函数分析结果表明,EG无定形和50%EG中的两种无定形有不同的焓松弛行为.  相似文献   

8.
The glass transition temperature (T(g)) of thin films is reduced by nanoconfinement, but it is also influenced by the free surface and substrate interface. To gain more insights into their contributions, dewetting behaviors of n-pentane, 3-methylpentane, and toluene films are investigated on various substrates as functions of temperature and film thickness. It is found that monolayers of these molecules exhibit sub-T(g) dewetting on a perfluoro-alkyl modified Ni substrate, which is attributable to the evolution of a 2D liquid. The onset temperature of dewetting increases with film thickness because fluidity evolves via cooperative motion of many molecules; sub-T(g) dewetting is observed for films thinner than 5 monolayers. In contrast, monolayers wet substrates of graphite, silicon, and amorphous solid water until crystallization occurs. The crystallites exhibit autophobic dewetting on the substrate covered with a wetting monolayer. The presence of premelting layers is inferred from the fact that n-pentane crystallites disappear on amorphous solid water via intermixing. Thus, the properties of quasiliquid formed on the crystallite surface differ significantly from those of the 2D liquid formed before crystallization.  相似文献   

9.
The thermolysis of Zr(BH4)4 vapor at 573 and 623 K in a vacuum of 1.33 × 10−1 Pa was studied. Nanosized zirconium diboride was produced as an X-ray amorphous powder and a crystalline film. According to electron microscopy data, the X-ray amorphous zirconium diboride powder obtained at 573 or 623 K consists of spherical particles 30–40 nm in diameter, which is in quite a good agreement with the equivalent particle diameter (∼35 nm) calculated from the specific surface area of ZrB2. After annealing at 1273 K, the X-ray amorphous zirconium diboride powder crystallizes into a hexagonal lattice with the unit cell parameters a = 0.3159 nm and c = 0.3527 nm. The coherent scattering length D hkl is ∼27 nm. The zirconium diboride film produced at 573 or 623 K crystallizes into a hexagonal lattice with the unit cell parameters a = 0.3163−0.3168 nm and c = 0.3524−0.3531 nm. The coherent scattering length D hkl is ∼14 nm. The thickness of the ZrB2 film on quartz, glass ceramics, and stainless steel is 5–7 μm. The microhardness of the film on a stainless steel substrate under a load of 20 g is 17.8 GPa.  相似文献   

10.
采用溶胶-凝胶法分别在K9玻璃、单晶硅和石英玻璃基底上制备了纳米TiO2和SiO2薄膜。利用SEM、UV-Vis及反射式椭圆偏振光谱仪对薄膜的微观结构及光学特性进行了表征和分析。结果表明:3种基底中, 单晶硅基底上TiO2和SiO2薄膜折射率最大;在非晶态K9玻璃和石英玻璃基底上TiO2薄膜折射率和透光率差异较大;SiO2薄膜在非晶态基底上折射率、透光率相近;3种基底上薄膜的折射率和消光系数都有随波长增大而减小的趋势, 同时Cauchy模型能较好的描述单晶硅基底上两种薄膜在400~800 nm波段的光学性能。  相似文献   

11.
采用溶胶-凝胶法分别在K9玻璃、单晶硅和石英玻璃基底上制备了纳米TiO2和SiO2薄膜。利用SEM、UV-Vis及反射式椭圆偏振光谱仪对薄膜的微观结构及光学特性进行了表征和分析。结果表明:3种基底中, 单晶硅基底上TiO2和SiO2薄膜折射率最大;在非晶态K9玻璃和石英玻璃基底上TiO2薄膜折射率和透光率差异较大;SiO2薄膜在非晶态基底上折射率、透光率相近;3种基底上薄膜的折射率和消光系数都有随波长增大而减小的趋势, 同时Cauchy模型能较好的描述单晶硅基底上两种薄膜在400~800 nm波段的光学性能。  相似文献   

12.
Molecular dynamics simulation of amorphous SiO2 spherical nanoparticles has been carried out in a model with different sizes, 2, 4, and 6 nm, under non-periodic boundary conditions. We use the pair interatomic potentials which have weak Coulomb interaction and Morse type short-range interaction. Models have been obtained by cooling from the melt via molecular dynamics (MD) simulation. Structural properties of amorphous nanoparticles obtained at 350 K have been studied via partial radial distribution functions (PRDFs), mean interatomic distances, coordination numbers, and bond-angle distributions, which are compared with those observed in the bulk. Calculations of the radial density profile in nanoparticles show the tendency of oxygen to concentrate at the surface as observed previously in other amorphous clusters or thin films. Size effects on structure of nanosized models are significant. The calculations show that if the size is larger than 4 nm, amorphous SiO2 nanoparticles have a distorted tetrahedral network structure with the mean coordination number ZSi-O approximately 4.0 and ZO-Si approximately 2.0 like those observed in the bulk. Surface structure, surface energy, and glass transition temperature of SiO2 nanoparticles have been obtained and presented.  相似文献   

13.
Thermal desorption spectroscopy is employed to examine transport mechanisms in structured, nanoscale films consisting of labeled amorphous solid water (ASW, H(2)(18)O, H(2)(16)O) and organic spacer layers (CCl(4), CHCl(3)) prior to ASW crystallization (T approximately 150-160 K). Self-transport is studied as a function of both the ASW layer and the organic spacer layer film thickness, and the effectiveness of these spacer layers as a bulk diffusion "barrier" is also investigated. Isothermal desorption measurements of structured films are combined with gas uptake measurements (CClF(2)H) to investigate water self-transport and changes in ASW film morphology during crystallization and annealing. CCl(4) desorption is employed as a means to investigate the effects of ASW film thickness and heating schedule on vapor-phase transport. Combined, these results demonstrate that the interlayer mixing observed near T approximately 150-160 K is inconsistent with a mechanism involving diffusion through a dense phase; rather, we propose that intermixing occurs via vapor-phase transport through an interconnected network of cracks/fractures created within the ASW film during crystallization. Consequently, the self-diffusivity of ASW prior to crystallization (T approximately 150-160 K) is significantly smaller than that expected for a "fragile" liquid, indicating that water undergoes either a glass transition or a fragile-to-strong transition at a temperature above 160 K.  相似文献   

14.
Time-of-flight (TOF) spectra of photofragment H atoms from the photodissociation of water ice films at 193 nm were measured for amorphous and polycrystalline water ice films with and without dosing of hydrogen chloride at 100-145 K. The TOF spectrum is sensitive to the surface morphology of the water ice film because the origin of the H atom is the photodissociation of dimerlike water molecules attached to the ice film surfaces. Adsorption of HCl on a polycrystalline ice film was found to induce formation of disorder regions on the ice film surface at 100-140 K, while the microstructure of the ice surface stayed of polycrystalline at 145 K with adsorption of HCl. The TOF spectra of photofragment Cl atoms from the 157 nm photodissociation of neutral HCl adsorbed on water ice films at 100-140 K were measured. These results suggest partial dissolution of HCl on the ice film surface at 100-140 K.  相似文献   

15.
The calorimetric glass transition behaviour in the amorphous forms of water is reviewed: for a heating rate of 30 K min−1 the onset temperature, or Tg, of the glass transition is 136±1 K for hyperquenched glassy water and annealed vapour-deposited amorphous solid water, and 129±1 K for the low-density form of pressure-amorphized hexagonal ice. The increase in heat capacity in the glass transition region is between 1.6–2 J K mol for the three amorphous forms. Annealing of the samples a few degrees below Tg or heating several degrees above the glass transition region has no influence on the onset temperatures at 136 K and 129 K respectively, which is contrary to ‘normal’ behaviour. The results are discussed with respect to the ‘structure’ of the three amorphous forms of water below the glass transition region and a “gel-like” state of water above Tg.  相似文献   

16.
We report results of molecular dynamics simulations of amorphous ice for pressures up to 22.5 kbar. The high-density amorphous ice (HDA) as prepared by pressure-induced amorphization of I(h) ice at T=80 K is annealed to T=170 K at various pressures to allow for relaxation. Upon increase of pressure, relaxed amorphous ice undergoes a pronounced change of structure, ranging from the low-density amorphous ice at p=0, through a continuum of HDA states to the limiting very high-density amorphous ice (VHDA) regime above 10 kbar. The main part of the overall structural change takes place within the HDA megabasin, which includes a variety of structures with quite different local and medium-range order as well as network topology and spans a broad range of densities. The VHDA represents the limit to densification by adapting the hydrogen-bonded network topology, without creating interpenetrating networks. The connection between structure and metastability of various forms upon decompression and heating is studied and discussed. We also discuss the analogy with amorphous and crystalline silica. Finally, some conclusions concerning the relation between amorphous ice and supercooled water are drawn.  相似文献   

17.
Interactions of 13CO2 guest molecules with vapor-deposited porous H2O ices have been examined using temperature-programmed desorption (TPD) and Fourier transform infrared (FTIR) techniques. Specifically, the trapping and release of 13CO2 by amorphous solid water (ASW) has been studied. The use of 13CO2 eliminates problems with background CO2. Samples were prepared by (i) depositing 13CO2 on top of ASW, (ii) depositing 13CO2 underneath ASW, and (iii) codepositing 13CO2 and H2O during ASW formation. Some of the deposited 13CO2 becomes trapped when the ice film is annealed. The amount of 13CO2 trapped in the film depends on the deposition method. The release of trapped molecules occurs in two stages. The majority of the trapped 13CO2 escapes during the ASW-to-cubic ice phase transition at 165 K, and the rest desorbs together with the cubic ice film at 185 K. We speculate that the presence of 13CO2 at temperatures up to 185 K is due to 13CO2 that is trapped in cavities within the ASW film. These cavities are similar to ones that trap the 13CO2 that is released during crystallization. The difference is that 13CO2 that remains at temperatures up to 185 K does not have access to escape pathways to the surface during crystallization.  相似文献   

18.
We present the first broadband dielectric spectroscopy (BDS) and differential scanning calorimetry study of supercooled xylitol-water mixtures in the whole concentration range and in wide frequency (10(-2)-10(6) Hz) and temperature (120-365 K) ranges. The calorimetric glass transition, T(g), decreases from 247 K for pure xylitol to about 181 K at a water concentration of approximately 37 wt. %. At water concentrations in the range 29-35 wt. % a plentiful calorimetric behaviour is observed. In addition to the glass transition, almost simultaneous crystallization and melting events occurring around 230-240 K. At higher water concentrations ice is formed during cooling and the glass transition temperature increases to a steady value of about 200 K for all higher water concentrations. This T(g) corresponds to an unfrozen xylitol-water solution containing 20 wt. % water. In addition to the true glass transition we also observed a glass transition-like feature at 220 K for all the ice containing samples. However, this feature is more likely due to ice dissolution [A. Inaba and O. Andersson, Thermochim. Acta, 461, 44 (2007)]. In the case of the BDS measurements the presence of water clearly has an effect on both the cooperative α-relaxation and the secondary β-relaxation. The α-relaxation shows a non-Arrhenius temperature dependence and becomes faster with increasing concentration of water. The fragility of the solutions, determined by the temperature dependence of the α-relaxation close to the dynamic glass transition, decreases with increasing water content up to about 26 wt. % water, where ice starts to form. This decrease in fragility with increasing water content is most likely caused by the increasing density of hydrogen bonds, forming a network-like structure in the deeply supercooled regime. The intensity of the secondary β-relaxation of xylitol decreases noticeably already at a water content of 2 wt. %, and at a water content above 5 wt. % it has been replaced by a considerably stronger water (w) relaxation at about the same frequency. However, the similarities in time scale and activation energy between the w-relaxation and the β-relaxation of xylitol at water contents below 13 wt. % suggest that the w-relaxation is governed, in some way, by the β-relaxation of xylitol, since clusters of water molecules are rare at these water concentrations. At higher water concentrations the intensity and relaxation rate of the w-relaxation increase rapidly with increasing water content (up to the concentration where ice starts to form), most likely due to a rapid increase of small water clusters where an increasing number of water molecules interacting with other water molecules.  相似文献   

19.
The glass transition behavior of glycerol and propylene glycol confined in nanoporous glass is investigated using differential scanning calorimetry. Both silanized and unsilanized porous glasses are used to confine the liquids with nominal pore sizes ranging from 2.5 to 7.5 nm, and the glass transition temperature (T(g)) and the limiting fictive temperature (T(f )') are measured on cooling and heating, respectively. The effect of pore fullness is also examined. We find that differences in T(g), DeltaC(p), and the enthalpy overshoot behavior observed on heating are significant between partially and completely filled pores for the case of the unsilanized controlled pore glasses (CPGs) but that the effect of pore fullness is insignificant for the silanized CPGs. In general, the behavior in the silanized CPGs is similar to the behavior in the completely filled unsilanized pores. For glycerol, this includes a small depression in T(f )' on the order of 5 K at 2.5 nm. For propylene glycol, similar behavior is found except that an additional glass transition is observed in both silanized and unsilanized systems approximately 30 K higher than the bulk and a slightly smaller depression on the order of 3 K at 2.5 nm is observed in the completely filled unsilanized pores and in partially and completely filled silanized pores. The results are compared to those in the literature, and the confinement effects are discussed.  相似文献   

20.
We studied effect of molecular interactions on the physical properties of binary freeze-dried solids and frozen aqueous solutions using model chemicals containing various functional groups (amino, carboxyl, hydroxyl). Thermal analysis of frozen solutions containing alkyl diamines and hydroxy di- or tricarboxylic acids showed thermal transitions (T(g)': glass transition of maximally freeze-concentrated phase) at temperatures higher than those of the individual solutes. A binary frozen solution containing 80 mM 1,3-diamino-2-hydroxypropane (single-solute T(g)'<-60 degrees C) and 120 mM citric acid (single-solute T(g)': -55.0 degrees C) made the transition at -30.8 degrees C. The molecular weight of the solutes had smaller effects on the transition temperatures of the frozen mixture component solutions. Lyophilization of some high T(g)' mixture frozen solutions (e.g., 1,3-diamino-2-hydroxypropane and citric acid) resulted in cake-structure amorphous solids with glass transition temperatures (T(g)) higher than those of the individual components. Networking of intense hydrogen-bondings and electrostatic interactions between the heterogeneous molecules through the multiple functional groups was suggested to reduce the component mobility in the amorphous freeze-concentrated phase and the freeze-dried solids. Controlling the interactions should be a key to optimizing the physical properties of multi-component amorphous freeze-dried pharmaceutical formulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号