共查询到20条相似文献,搜索用时 57 毫秒
1.
Managing polymer surface structure using surface active block copolymers in block copolymer mixtures
A. Hexemer E. Sivaniah E. J. Kramer M. Xiang X. Li Daniel A. Fischer C. K. Ober 《Journal of Polymer Science.Polymer Physics》2004,42(3):411-420
Surface coatings were prepared from semifluorinated monodendron surface‐active block copolymers (SABC) and a thermoplastic elastomer (TPE) [poly(styrene‐b‐ethylene butylene‐b‐styrene)] by either spin‐casting a bilayer structure or by blending. The surface of these coatings was characterized by contact angle measurements, scanning force microscopy (SFM) and near‐edge X‐ray absorption fine structure (NEXAFS) methods. Both bilayers and blends resulted in very low energy surfaces under the right processing conditions and the liquid crystallinity of the semifluorinated monodendrons gave rise to temporally stable, non‐reconstructing surfaces in water. However for small thicknesses of the SABC top layer or for low SABC content blends, SFM shows islands of the fluorinated block of the SABC and incomplete surface coverage of the TPE, an observation confirmed by NEXAFS analysis. Very high water contact angles were produced by even modest amounts of SABC in either case but to achieve low contact angle hysteresis, it was necessary to produce uniform surface coverage by the SABC. Such uniform coverage can be accomplished by spin casting a top layer of SABC as thin as 60 nm in the bilayer case but at least 10 wt% SABC in TPE combined with drop casting of a hot solutions is needed for the blends to achieve equivalent surface structure and properties. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 411–420, 2004 相似文献
2.
We described the use of 1,1 diphenylethylene derivatives in the synthesis of well-defined star block copolymers. Classical end-capping of polystyryl carbanion with −CH2CH2OTBDMSi derivative gives a heterobifunctional macroinitiator leading to ABC star block copolymers through successive anionic and ring opening polymerizations (ROP) or anionic and atom transfer radical (ATRP) polymerizations. An unexpected reaction between polystyryl carbanion and −CH2OTBDMSi derivative, strongly depending on the medium polarity, opens an easy way to either A2B or A3B star block copolymers. 相似文献
3.
Kim BJ Bang J Hawker CJ Chiu JJ Pine DJ Jang SG Yang SM Kramer EJ 《Langmuir : the ACS journal of surfaces and colloids》2007,23(25):12693-12703
A simple strategy to tailor the surface of nanoparticles for their specific adsorption to and localization at block copolymer interfaces was explored. Gold nanoparticles coated by a mixture of low molecular weight thiol end-functional polystyrene (PS-SH) (Mn = 1.5 and 3.4 kg/mol) and poly(2-vinylpyridine) homopolymers (P2VP-SH) (Mn = 1.5 and 3.0 kg/mol) were incorporated into a lamellar poly(styrene-b-2-vinylpyridine) diblock copolymer (PS-b-P2VP) (Mn = 196 kg/mol). A library of nanoparticles with varying PS and P2VP surface compositions (FPS) and high polymer ligand areal chain densities was synthesized. The location of the nanoparticles in the PS-b-P2VP block copolymer was determined by transmission electron microscopy. Sharp transitions in particle location from the PS domain to the PS/P2VP interface, and subsequently to the P2VP domain, were observed at FPS = 0.9 and 0.1, respectively. This extremely wide window of FPS values where the polymer-coated gold nanoparticles adsorb to the interface suggests a redistribution of PS and P2VP polymers on the Au surface, inducing the formation of amphiphilic nanoparticles at the PS/P2VP interface. In a second and synthetically more challenging approach, gold nanoparticles were covered with a thiol terminated random copolymer of styrene and 2-vinylpyridine synthesized by RAFT polymerization. Two different random copolymers were considered, where the molecular weight was fixed at 3.5 kg/mol and the relative incorporation of styrene and 2-vinylpyridine repeat units varied (FPS = 0.52 and 0.40). The areal chain density of these random copolymers on Au is unfortunately not high enough to preclude any contact between the P2VP block of the block copolymer and the Au surface. Interestingly, gold nanoparticles coated by the random copolymer with FPS = 0.4 were dispersed in the P2VP domain, while those with FPS = 0.52 were located at the interface. A simple calculation for the adsorption energy to the interface of the nanoparticles with different surface arrangements of PS and P2VP ligands supports evidence for the rearrangement of thiol terminated homopolymers. An upper limit estimate of the adsorption energy of nanoparticles uniformly coated with a random arrangement of PS and P2VP ligands where a 10% surface area was occupied by P2VP -mers or chains was approximately 1 kBT, which indicates that such nanoparticles are unlikely to be segregated along the interface, in contrast to the experimental results for nanoparticles with mixed ligand-coated surfaces. 相似文献
4.
Sotiria Karagiovanaki Alexandros Koutsioubas Nikolaos Spiliopoulos Dimitris L. Anastassopoulos Alexandros A. Vradis Chris Toprakcioglu Angeliki Elina Siokou 《Journal of polymer science. Part A, Polymer chemistry》2010,48(14):1676-1682
We have studied the adsorption of end-attaching block copolymer chains inside the cylindrical pores of nanoporous alumina. Highly asymmetric PS-PEO block copolymers, with a small PEO anchoring block and a long PS dangling block, were allowed to adsorb onto porous alumina substrates with an average pore diameter of ∼200 nm from toluene solution. The adsorption process was monitored using FTIR spectroscopy, whereas depth profile analysis was performed by means of XPS and Ar+ ion sputtering. It is found that the PS-PEO adsorption kinetics in porous alumina are ∼4 orders of magnitude slower than the corresponding case of a flat alumina substrate. It appears that chains adsorbed near the pore entrance early on tend to form a barrier for chains entering the pore at later times, thereby slowing down the adsorption process significantly. This effect is much more pronounced for large chains whose dimensions are comparable with the pore diameter. The equilibrium adsorbance value is also affected by chain size due to the additional entropic penalty associated with chain confinement, the adsorbance falling substantially when the chain dimensions become comparable with the pore diameter. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1676–1682, 2010 相似文献
5.
Block copolymers, composed of a hydrophobic block [poly(N-t-butylbenzoyl ethylenimine) or poly(N-lauroyl ethylenimine)] and a hydrophilic block [poly(N-propionyl ethylenimine)], synthesized by cationic ring-opening polymerization of 2-substituted Δ2-oxazolines, were selectively deacylated by acid hydrolysis. The hydrolysis process was monitored by using 1H-NMR. The results show that the propionyl groups could be removed from the hydrophilic block of the polymer chain without touching the hydrophobic block, if appropriate reaction conditions were used. 相似文献
6.
Nonspherical assemblies generated from polystyrene-b-poly(L-lysine) polyelectrolyte block copolymers
Lübbert A Castelletto V Hamley IW Nuhn H Scholl M Bourdillon L Wandrey C Klok HA 《Langmuir : the ACS journal of surfaces and colloids》2005,21(14):6582-6589
This report describes the aqueous solution self-assembly of a series of polystyrene(m)-b-poly(L-lysine)n block copolymers (m = 8-10; n = 10-70). The polymers are prepared by ring-opening polymerization of epsilon-benzyloxycarbonyl-L-lysine N-carboxyanhydride using amine terminated polystyrene macroinitiators, followed by removal of the benzyloxycarbonyl side chain protecting groups. The critical micelle concentration of the block copolymers determined using the pyrene probe technique shows a parabolic dependence on peptide block length exhibiting a maximum at n = approximately 20 (m = 8) or n = approximately 60 (m = 10). The shape and size of the aggregates has been studied by dynamic and static light scattering, small-angle neutron scattering (SANS), and analytical ultracentrifugation (AUC). Surprisingly, Holtzer and Kratky analysis of the static light scattering results indicates the presence of nonspherical, presumably cylindrical objects independent of the poly(L-lysine)n block length. This is supported by SANS data, which can be fitted well by assuming cylindrical scattering objects. AUC analysis allows the molecular weight of the aggregates to be estimated as several million g/mol, corresponding to aggregation numbers of several 10s to 100s. These aggregation numbers agree with those that can be estimated from the length and diameter of the cylinders obtained from the scattering results. 相似文献
7.
8.
Jae-Woo Choi Kyu-Sang Kwon Byungryul An Soonjae Lee Seok-Won Hong Sang-Hyup Lee 《Colloid and polymer science》2014,292(1):275-279
A nanoscale material represents a promising adsorbent material for water treatment due to its large surface area and its ability to incorporate compounds with specific functions. In this research, the effective immobilization of nanoparticles using an ultrasonic technique and the change of the surface morphology of the substrate by sonication was investigated. The effective surface immobilization of the nano-magnetite powder and an increase in the reactive area with aqueous contaminant were caused by bubbles generated by the sonication method. The effect of the frequency of the ultrasonic wave on the immobilization of the nano-powder was also investigated. 相似文献
9.
Adsorption of copolymers on patterned surfaces is studied using lattice modeling and multiple Markov chain Monte Carlo methods. The copolymer is composed of alternating blocks of A and B monomers, and the adsorbing surface is composed of alternating square blocks containing C and D sites. Effects of interaction specificity on the adsorbed pattern of the copolymer and the sharpness of the adsorption transition are investigated by comparing three different models of copolymer-surface interactions. Analyses of the underlying energy distribution indicate that adsorption transitions in our models are not two-state-like. We show how the corresponding experimental question may be addressed by calorimetric measurements as have been applied to protein folding. Although the adsorption transitions are not "first order" or two-state-like, the sharpness of the transition increases when interaction specificity is enhanced by either including more attractive interaction types or by introducing repulsive interactions. Uniformity of the pattern of the adsorbed copolymer is also sensitive to the interaction scheme. Ramifications of the results from the present minimalist models of pattern recognition on the energetic and statistical mechanical origins of undesirable nonspecific adsorption of synthetic biopolymers in cellular environments are discussed. 相似文献
10.
Kendall A. Smith Deanna L. Pickel Kevin Yager Kim Kisslinger Rafael Verduzco 《Journal of polymer science. Part A, Polymer chemistry》2014,52(2):154-163
Conjugated block copolymers are potentially useful for organic electronic applications and the study of interfacial charge and energy transfer processes; yet few synthetic methods are available to prepare polymers with well‐defined conjugated blocks. Here, we report the synthesis and thin film morphology of a series of conjugated poly(3‐hexylthiophene)‐block‐poly(9,9‐dioctylfluorene) (P3HT‐b‐PF) and poly(3‐dodecylthiophene)‐block‐poly(9,9‐dioctylfluorene) (P3DDT‐b‐PF) block copolymers prepared by functional external initiators and click chemistry. Functional group control is quantified by proton nuclear magnetic resonance spectroscopy, size‐exclusion chromatography, and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. The thin film morphology of the resulting all‐conjugated block copolymers is analyzed by a combination of grazing‐incidence X‐ray scattering, atomic force microscopy, and transmission electron microscopy. Crystallization of the P3HT or P3DDT blocks is present in thin films for all materials studied, and P3DDT‐b‐PF films exhibit significant PF/P3DDT co‐crystallization. Processing conditions are found to impact thin film crystallinity and orientation of the π–π stacking direction of polymer crystallites. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 154–163 相似文献
11.
A novel strategy for the preparation of peptidic-synthetic bioconjugate block copolymers is based upon sequential condensation and living radical addition polymerizations, each performed upon a solid support. 相似文献
12.
13.
Sinnwell S Inglis AJ Davis TP Stenzel MH Barner-Kowollik C 《Chemical communications (Cambridge, England)》2008,(17):2052-2054
The tendency of electron-deficient dithioesters to undergo hetero Diels-Alder cycloadditions is successfully used to generate polymer conjugates between a RAFT-polymerized poly(styrene) and a diene-terminated poly(epsilon-caprolactone). 相似文献
14.
15.
16.
H. Etxeberria I. Zalakain R. Fernandez G. Kortaberria I. Mondragon 《Colloid and polymer science》2013,291(3):633-640
Surface functionalization of semiconductor CdSe nanoparticles has been achieved with polystyrene (PS) brushes by “grafting from” technique for further addition to a polystyrene-b-polybutadiene-b-polystyrene (SBS) block copolymer in order to obtain self-assembled composites. For modification of nanoparticle surface 3-glycidoxypropyltrimethoxysilane (GPS) was used at first for the later attachment of the 4,4′-azobis(4-cyanopentanoic acid) azo initiator. Fourier-transform infrared spectroscopy confirmed the presence of GPS and PS on the surface of nanoparticles. Atomic force microscopy was used for morphological characterization of SBS/CdSe nanocomposites. Modification of nanoparticles with PS brushes by radical polymerization improved their affinity with PS block and the dispersion of nanoparticles avoiding agglomeration. CdSe nanoparticle size was measured to be around 2 nm by the use of X-ray diffraction and UV–Vis techniques. Optical properties were characterized using fluorescence measurements. 相似文献
17.
Stephen M. June Philippe Bissel Timothy E. Long 《Journal of polymer science. Part A, Polymer chemistry》2012,50(18):3797-3805
Copper(I) catalyzed azide‐alkyne 1,3‐Huisgen cycloaddition reaction afforded the synthesis of triazole‐containing polyesters and segmented block copolyesters at moderate temperatures. Triazole‐containing homopolyesters exhibited significantly increased (~40 °C) glass transition temperatures (Tg) relative to high temperature, melt synthesis of polyesters with analogous structures. Quantitative synthesis of azido‐terminated poly(propylene glycol) (PPG) allowed for the preparation of segmented polyesters, which exhibited increased solubility and mechanical ductility relative to triazole‐containing homopolyesters. Differential scanning calorimetry demonstrated a soft segment (SS) Tg near ?60 °C for the segmented polyesters, consistent with microphase separation. Tensile testing revealed Young's moduli ranging from 7 to 133 MPa as a function of hard segment (HS) content, and stress at break values approached 10 MPa for 50 wt % HS segmented click polyesters. Dynamic mechanical analysis demonstrated an increased rubbery plateau modulus with increased HS content, and the Tg's of both the SS and HS did not vary with composition, confirming microphase separation. Atomic force microscopy also indicated microphase separated and semicrystalline morphologies for the segmented click polyesters. This is the first report detailing the preparation of segmented copolyesters using click chemistry for the formation of ductile membranes with excellent thermomechanical response. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
18.
Berret JF 《Advances in colloid and interface science》2011,167(1-2):38-48
In this review, we address the issue of the electrostatic complexation between charged-neutral diblock copolymers and oppositely charged nanocolloids. We show that nanocolloids such as surfactant micelles and iron oxide magnetic nanoparticles share similar properties when mixed with charged-neutral diblocks. Above a critical charge ratio, core-shell hierarchical structures form spontaneously under direct mixing conditions. The core-shell structures are identified by a combination of small-angle scattering techniques and transmission electron microscopy. The formation of multi-level objects is driven by the electrostatic attraction between opposite charges and by the release of the condensed counterions. Alternative mixing processes inspired from molecular biology are also described. The protocols applied here consist in screening the electrostatic interactions of the mixed dispersions, and then removing the salt progressively as an example by dialysis. With these techniques, the oppositely charged species are intimately mixed before they can interact, and their association is monitored by the desalting kinetics. As a result, sphere- and wire-like aggregates with remarkable superparamagnetic and stability properties are obtained. These findings are discussed in the light of a new paradigm which deals with the possibility to use inorganic nanoparticles as building blocks for the design and fabrication of supracolloidal assemblies with enhanced functionalities. 相似文献
19.
O. G. Zakharova Yu. V. Golyagina Yu. D. Semchikov 《Russian Journal of Applied Chemistry》2009,82(4):644-649
Amphiphilic block copolymers of N-pyrrolidone and styrene were prepared by chain transfer to organogermanium compounds bis(pentafluorophenyl)germane and tris(pentafluorophenyl)germane. The relative chain-transfer constants were determined. The surface properties of the isolated block copolymers with various numbers of units in the hydrophilic block were studied. The polar and dispersive components of the surface tension of films of the amphiphilic block copolymers were calculated by the Zisman method. 相似文献
20.
Physicochemical evaluation of PLA nanoparticles stabilized by water-soluble MPEO-PLA block copolymers 总被引:4,自引:0,他引:4
Chognot D Six JL Leonard M Bonneaux F Vigneron C Dellacherie E 《Journal of colloid and interface science》2003,268(2):441-447
Different water-soluble MPEO-PLA diblock copolymers with various alpha-methoxy-omega-hydroxyl polyethylene (MPEO) and poly(lactic acid) (PLA) block lengths have been synthesized. Their surface-active properties were evidenced by surface tension (water/air) measurements. In each case the surface tension leveled down above a critical polymer concentration, which was attributed to the formation of a dense polymer layer at the liquid-air interface. The applicability of copolymers as emulsion stabilizers in the preparation of PLA nanospheres by an o/w emulsion/evaporation technique was then investigated. Four copolymers presenting sufficient water solubility and good surfactive properties were used to prepare PLA nanospheres with MPEO chains firmly anchored at the particle surface. The effect of polymer concentration in emulsion on particle size and surface coverage was examined. Whatever the copolymer characteristics, it was found that the optimal concentration to obtain a large amount of MPEO at the particle surface was similar (around 2 g/l). The effect of the copolymer composition on MPEO layer characteristics and on colloidal stability was also evaluated. The conformation of MPEO blocks at the PLA particle surface is discussed in relation to the layer thickness and the surface area occupied per molecule. 相似文献