首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
In this paper, the stability of various atomic configurations containing a self-interstitial atom (SIA) in a model representing α-iron is investigated. From the energy panorama maps of the SIA located in possible non-equivalent interstitial sites, six relatively stable self-interstitial sites are found, whose structures and formation energies have been described and calculated using the modified analytical embedded atom method and molecular dynamics. The simulation results indicate that the [110] dumbbell interstitial is the energetically most favorable configuration, which is in good agreement with the experimental and ab initio results, and the distances between two displaced atoms that compose the [100], [110] and [111] direction dumbbells have been computed to be 0.68a, 0.65a and 0.29a, respectively, not all being about 0.75a apart. The relaxed displacements up to the fifth-nearest-neighbor atoms around the SIA in O interstitial position are also calculated.  相似文献   

2.
A theoretical modeling of the formation of Frenkel pairs and the diffusion of a self-interstitial atom in silicon crystals at normal and high (hydrostatic) pressures has been performed using molecular dynamics, semiempirical quantum-chemical (NDDO-PM5, PM6), and ab initio (SIESTA) methods. It is shown that, in a silicon crystal, the most stable configuration of a self-interstitial atom in the neutral charge state (I 0) is the split configuration 〈110〉. The shifted tetrahedral configuration (T 1) is stable in the singlet and triplet excited states, as well as in the charge state Z = +2. The split 〈110〉 interstitial configuration remains stable under hydrostatic pressure (P ≤ 80 kbar). The activation barriers for diffusion of self-interstitial atoms in silicon crystals are determined to be as follows: ΔE a (Si)(〈110〉 → T 1) = 0.59 eV, ΔE a (Si)(T 1T1) = 0.1 eV, and ΔE a (Si)(T 1 → 〈110〉) = 0.23 eV. The hydrostatic pressure (P ≤ 80 kbar) increases the activation barrier for diffusion of self-interstitial atoms in silicon crystals. The energies of the formation of a separate Frenkel pair, a self-interstitial atom, and a vacancy are determined. It is demonstrated that the hydrostatic pressure decreases the energy of the formation of Frenkel pairs.  相似文献   

3.
Employing a first-principles method based on the density function theory,we systematically investigate the structures,stability and diffusion of self-interstitial atoms(SIAs) in tungsten(W).The <111> dumbbell is shown to be the most stable SIA defect configuration with the formation energy of ~9.43 eV.The on-site rotation modes can be described by a quite soft floating mechanism and a down-hill "drift" diffusion process from <110> dumbbell to <111> dumbbell and from <001> dumbbell to <110> dumbbell,respectively.Among different SIA configurations jumping to near neighboring site,the <111> dumbbell is more preferable to migrate directly to first-nearest-neighboring site with a much lower energy barrier of 0.004 eV.These results provide a useful reference for W as a candidate plasma facing material in fusion Tokamak.  相似文献   

4.
Liu Yue-Lin  Gui Li-Jiang  Jin Shuo 《中国物理 B》2012,21(9):96102-096102
Employing the ab initio total energy method based on the density functional theory with the generalized gradient approximation, we have investigated the theoretical mechanical properties of copper (Cu) systematically. The theoretical tensile strengths are calculated to be 25.3 GPa, 5.9 GPa, and 37.6 GPa for the fcc Cu single crystal in the [001], [110], and [111] directions, respectively. Among the three directions, the [110] direction is the weakest one due to the occurrence of structure transition at the lower strain and the weakest interaction of atoms between the (110) planes, while the [111] direction is the strongest direction because of the strongest interaction of atoms between the (111) planes. In terms of the elastic constants of Cu single crystal, we also estimate some mechanical quantities of polycrystalline Cu, including bulk modulus B, shear modulus G, Young's modulus Ep, and Poisson's ratio ν.  相似文献   

5.
It is shown for (111) and (001) interfaces that at an identical degree of strain relaxation in semi-conductor epitaxial films, the ratio of distances D between neighboring dislocations is D (111)/D (001) = 1.5. This allows us to establish that dislocation interface (7 7 10) contains partial 90° Shockley dislocations lying in three directions of 〈110〉.  相似文献   

6.
Residual chlorines, which originate from HAuCl4, enhance the aggregation of gold (Au) nanoparticles and clusters, preventing the generation of highly active supported Au catalysts. However, the detailed mechanism of residual-chlorine-promoted aggregation of Au is unknown. Herein to investigate this mechanism, density functional theory (DFT) calculations of Au and Cl adsorption onto a reduced rutile TiO2 (110) surface were performed using a generalised gradient approximation Perdew, Burke, and Ernzerhof formula (GGA–PBE) functional and plane-wave basis. Although both Au and Cl atoms prefer to mono-absorb onto oxygen defect sites, Cl atoms have a stronger absorption onto a reduced TiO2 (110) surface, abbreviated as rTiO2 (110) in the following, than Au atoms. Additionally, co-adsorption of a Cl atom and a Au atom or Au nanorod onto a rTiO2 surface was investigated; Cl adsorption onto an oxygen defect site weakens the interaction between a Au atom or Au nanorod and rTiO2 (110) surface. The calculation results suggest that the depletion of interaction between Au and rTiO2 surface is due to strong interaction between Cl atoms at oxygen defect sites and neighbouring bridging oxygen (OB) atoms.  相似文献   

7.
张红  温述龙  潘敏  黄整  赵勇  刘翔  谌继明 《中国物理 B》2016,25(5):56102-056102
Based on the density functional theory, we calculated the structures of the two main possible self-interstitial atoms(SIAs) as well as the migration energy of tungsten(W) atoms. It was found that the difference of the 110 and 111 formation energies is 0.05–0.3 e V. Further analysis indicated that the stability of SIAs is closely related to the concentration of the defect. When the concentration of the point defect is high, 110 SIAs are more likely to exist, 111 SIAs are the opposite. In addition, the vacancy migration probability and self-recovery zones for these SIAs were researched by making a detailed comparison. The calculation provided a new viewpoint about the stability of point defects for selfinterstitial configurations and would benefit the understanding of the control mechanism of defect behavior for this novel fusion material.  相似文献   

8.
周宗荣  王宇  夏源明 《物理学报》2007,56(3):1526-1531
运用分子动力学方法,对γ-TiAl金属间化合物的面缺陷能(层错能和孪晶能)进行了研究. 计算得到γ-TiAl不同滑移系(或孪生系)的整体堆垛层错能曲线,结果表明,γ-TiAl较一般fcc晶体结构的金属可动滑移系(孪生系)的数量减少,在外界条件下呈脆性. 研究孪生系(1/6)〈112〉{111}的弛豫的整体堆垛层错(GSF)能和整体孪晶(GTF)能曲线,对不稳定层错能γusf、稳定层错能γsf和不稳定孪晶能γusf值进行分析,可以预知, γ-TiAl的主要变形机理为孪生系(1/6)〈112〉{111}的孪生和普通滑移系(1/6)〈110〉{111}的滑移,以及超滑移系(1/2)〈011〉{111}的滑移. 关键词: γ-TiAl')" href="#">γ-TiAl 堆垛层错能 孪晶能 分子动力学  相似文献   

9.
It has been previously established that it is necessary to keep single targets of Ge and Si above a certain critical temperature Ta before one can obtain an ejection pattern indicative of surface order. In the following work, we report on the dependence of the disorder to order transition temperature, Ta on the incident ion mass, the dose rate and the crystallography of the target. The disorder to order transition temperature, Ta has been measured for 5, 10 and 15 keV Ar+, K+ and Ne+ bombardment of (111), (110) and (100) Ge, using the sputtered atom ejection pattern to indicate the restitution of order. The dose rate dependence of the transition temperature, Ta , was used to calculate activation energies for the transition occurring.  相似文献   

10.
The configurations at thermodynamic equilibrium of CoxAg201-x nanoparticles are explored for 0 < x < 201 by means of Metropolis Monte Carlo simulations with a semi-empirical embedded atom potential at temperatures from 100 K to 1000 K. Remarkable configurations are predicted in this temperature range. As a consequence of a competition between strain and Co binding at low temperature, for x < 20, Co is distributed just below the cluster surface layer into groups of no more than 5 atoms, favouring well-defined positions, and the cluster central area is avoided. To increase the temperature favours the clustering of these small groups. Their dissolution is predicted at temperatures higher than the melting temperature of the cluster. For x > 50, Co regroups at the centre of the cluster and intersects {111}-facets when Ag atoms are not numerous enough to form an entire surface shell. At these stoechiometries, temperature is not sufficient to mix Ag and Co, even above the melting point. At still smaller Ag concentrations, the Ag atoms are distributed at lowest coordination sites, along the edges of the cluster, avoiding the cluster facets as well as inner sites. At intermediate stoechiometries (20 < x < 50), either oblate Co groups below the surface or a compact group at the centre of the cluster are possible.Received: 1 October 2003, Published online: 27 January 2004PACS: 61.46. + w Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals - 61.43.Bn Structural modeling: serial-addition models, computer simulation  相似文献   

11.
J.H. Dai  Y. Song  R. Yang 《Surface science》2011,605(13-14):1224-1229
First principle calculations have been performed to explore the adsorption characteristics of water molecule on (001) and (110) surfaces of magnesium hydride. The stable adsorption configurations of water molecule on the surfaces of MgH2 were identified by comparing the total energies of different adsorption states. The (110) surface shows a higher reactivity with H2O molecule owing to the larger adsorption energy than the (001) surface, and the adsorption mechanisms of water molecule on the two surfaces were clarified from electronic structures. For both (001) and (110) surface adsorptions, the O p orbitals overlapped with the Mg s and p orbitals leading to interactions between O and Mg atoms and weakening the O–H bonds in water molecule. Due to the difference of the bonding strength between O and Mg atoms in the (001) and (110) surfaces, the adsorption energies and configurations of water molecule on the two surfaces are significantly different.  相似文献   

12.
Atomic recoil events on free surfaces orthogonal to two different anti-phase boundaries (APBs) and two grain boundaries (GBs) in Ni3Al are simulated using molecular dynamics methods. The threshold energy for sputtering, E sp, and adatom creation, E ad, are determined as a function of recoil direction. The study is relevant to FEG STEM (a scanning transmission electron microscope fitted with a field emission gun) experiments on preferential Al sputtering and/or enhancement of the Ni–Al ratio near boundaries. Surfaces intersected by {110} and {111} APBs have minimum E sp of 6.5?eV for an Al atom on the Ni–Al mixed (M) surface, which is close to the value of 6.0?eV for a perfect M surface. High values of E sp of an Al atom generally occur at a large angle to the surface normal and depend strongly on the detailed atomic configuration of the surface. The mean E sp, averaged over all recoil directions, reveals that APBs have a small effect on the threshold sputtering. However, the results for E ad imply that an electron beam could create more Al adatoms on surfaces intersected by APBs than on those without. The equilibrium, minimum energy structures for a (001) surface intersected by either Σ5[001](210) or Σ25[001](340) symmetric tilt grain boundaries are computed. E sp for surface Al atoms near these GBs increases monotonically with increasing recoil angle to the surface normal, with a minimum value, which is only about 1?eV different from that obtained for a perfect surface. Temperature up to 300?K has no effect on this result. It is concluded that the experimental observations of preferential sputtering are due to effects beyond those for E sp studied here. Possible reasons for this are discussed.  相似文献   

13.
Hydrogen that is accumulated within the grain boundaries can lead to a decrease of the critical strain required to fracture the material. The paper presents results of ab initio modelling of hydrogen–grain boundary interaction in ferromagnetic bcc iron. Modelling was performed using density functional theory with generalised gradient approximation (GGA’96), as implemented in WIEN2k package. Three fully relaxed tilt grain boundaries, Σ5(310), Σ5(210) and Σ3(111), were studied. The supercells contained 40–48 atoms, i.e. 20–24 atoms in each of the two ‘grains’. Calculated formation energies of grain boundaries is 1.44, 1.83 and 1.46 J/m2 and the maximum binding (trapping) energies of hydrogen to the boundaries are 0.43, 0.83 and 0.39 eV, respectively. These values are close to other researchers’ data. The higher value of trapping energy of the Σ5(210) boundary is probably due to the asymmetrical atom configurations resulting from mutual rigid shift of the two grains that was necessary to be introduced to provide optimal distances between Fe atoms, unlike the other two boundary types.  相似文献   

14.
Employing first-principles density functional theory (DFT), the structures and electronic and mechanical properties of Al(111)/ZrB2(0001) heterojunctions are investigated. It is found that both B-terminated ZrB2(0001) and Zr-terminated ZrB2(0001) can form heterojunction interfaces with Al(111) surface. The heterojunction with B-terminated ZrB2(0001) is demonstrated to be most stable by comparing the surface adhesion energies of six different heterojunction models. In the stable configurations, the Al atom is found projecting to the hexagonal hollow site of neighbouring boron layer for the B-terminated ZrB2(001), and locating at the top site of the boron atoms for Zr-terminated ZrB2(001) interface. The mechanisms of interface interaction are investigated by density of states, charge density difference and band structure calculations. It is found that covalent bonds between surface Al atoms and B atoms are formed in the B-terminated heterojunction, whereas the Al atoms and Zr atoms are stabilised by interface metallic bonds for the Zr-terminated case. Mechanical properties of Al/ZrB2 heterojunctions are also predicted in the current work. The values of moduli of Al/ZrB2 heterojunctions are determined to be between those of single crystal Al and ZrB2, which exhibit the transition of mechanical strength between two bulk phases. DFT calculations with the current models provide the mechanical properties for each heterojunction and the corresponding contributions by each type of interface in the composite materials. This work paves the way for industrial applications of Al(111)/ZrB2(0001) heterojunctions.  相似文献   

15.
The Energy levels of a muonic atom, taking electron screening into account are determined by directly solving the Dirac Equation in a screened Coulomb potential of the ALLIS-MORSE type. The non-relativistic limit of the result agrees with the values obtained by solving the Schrödinger Equation for a muon in such a potential. The deviation from the Coulomb case is of the form 3 exp (?xZm/me), where x ≈ 2 to 7 for the 1S1/2 state and is thus small if values of a1 are taken from the tables of ALLIS and MORSE. However these values, fitted to electron-scattering experiments may not be relevant for muonic atoms so that experimental determination of a1 for muonic atoms is required. If a1 should be smaller, the perturbation of the Coulomb levels would be greater, especially for the outer shells, and one could vary the parameter a1 to a1 to fit the results with experiments.  相似文献   

16.
17.
汤富领  陈功宝  谢勇  路文江 《物理学报》2011,60(6):66801-066801
应用分子动力学方法,采用嵌入势模型在熔点下和熔点上对Al(001),(110)和(111)表面的原子结构和自扩散现象进行研究.发现这些表面的第一层原子在低于熔点时,Al(110)面在700±10 K,Al(001)面在 860±10 K,Al(111)面在 930±10 K呈现明显自扩散且最终转变为"类液"结构,而其余各层仍保留有序状态.对这种"类液"结构进行均方位移、结构有序参数、径向分布函数和z向粒子密度分析,发现其结构和扩散行为与熔化的Al表面不同,并能在一定温度区间稳定存在.在"类液 关键词: 表面结构 分子动力学 自扩散  相似文献   

18.
We use ultra-high vacuum scanning tunneling microscopy (UHV–STM) to probe, at the atomic level, the structure of mass-selected isolated V1, V2, VO and VO2 clusters deposited on rutile TiO2(110) by ion soft landing. All four species interact differently with the TiO2 surface and the ultimate binding site and configuration strikes a balance between the gas-phase structure and the ligation of this cluster by the TiO2 surface. Our results show that vanadium atoms prefer to bind in the upper threefold hollow sites on the surface and have a slight tendency to pair along the [1–10] direction, while vanadium dimers bind to the surface oriented along the [001] direction exclusively. VO clusters bind with the vanadium atom in the upper threefold hollow site and with the oxygen atom bound to an adjacent fivefold coordinated Ti atom (5c-Ti). The VO2 cluster also binds with the vanadium atom in the upper threefold hollow site and with both oxygen atoms bound to adjacent 5c-Ti atoms or with only one oxygen bound to the surface and the other directed out of the plane of the surface.  相似文献   

19.
张林  王绍青  陈难先 《中国物理 B》2012,21(3):33601-033601
The differences in structural change between Au225 and Au369 clusters with their (111) facets supported on MgO(100) surfaces at 5 K are studied by using molecular-dynamics simulations with the atomic interchange potentials of the Au/MgO interface. The parameters are obtained from the ab initio energies using the Chen-Möbius inversion method. Analyses of the pair distribution functions show that the two Au clusters use different deformation processes to adjust the distances between the interface atoms, owing to the misfit between the atom distances among the clusters and the substrates. The local structural changes are identified by atomic density profiles.  相似文献   

20.
Uhrmacher  M.  Aldon  L.  Schaaf  P.  Metzner  H.  Olivier-Fourcade  J.  Jumas  J.-C. 《Hyperfine Interactions》1999,120(1-8):371-375
We report on Perturbed Angular Correlation measurements in polycrystalline In2S3 samples in the temperature range from 8 K to 1000 K where two different crystallographic phases β and α occur. As probes, implanted 111In nuclei have been used. The three observed EFGs are attributed to probes residing substitutionally in the different sulfur-octahedra and -tetrahedra of β-In2S3. A strong damping between 150 K and 300 K has been attributed to EFG fluctuations following the 111In(EC)111Cd decay. The α-phase (above 680 K) is characterized by a different dynamical damping of the perturbation functions, caused by mobile In atoms. Therefore, the semiconductor In2S3 shows, in two different temperature ranges, dynamical PAC-spectra which correspond to different types of mobile charge carriers. Since 111In is a self atom in In2S3, this compound is an ideal substance to study the charge transport phenomena by the PAC technique. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号