首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The early growth response gene 2 (EGR2) is located at chromosome 10q21, one of the susceptibility loci in bipolar disorder (BD). EGR2 is involved in cognitive function, myelination, and signal transduction related to neuregulin-ErbB receptor, Bcl-2 family proteins, and brain-derived neurotrophic factor. This study investigated the genetic association of the EGR2 gene with BD and schizophrenia (SPR) in Korea. In 946 subjects (350 healthy controls, 352 patients with BD, and 244 with SPR), nine single nucleotide polymorphisms (SNPs) in the EGR2 gene region were genotyped. Five SNPs showed nominally significant allelic associations with BD (rs2295814, rs61865882, rs10995315, rs2297488, and rs2297489), and the positive associations of all except rs2297488 remained significant after multiple testing correction. Linkage disequilibrium structure analysis revealed two haplotype blocks. Among the common identified haplotypes (frequency > 5%), 'T-G-A-C-T (block 1)' and 'A-A-G-C (block 2)' haplotypes were over-represented, while 'C-G-G-T-T (block 1)' haplotype was under-represented in BD. In contrast, no significant associations were found with SPR. Although an extended analysis with a larger sample size or independent replication is required, these findings suggest a genetic association of EGR2 with BD. Combined with a plausible biological function of EGR2, the EGR2 gene is a possible susceptibility gene in BD.  相似文献   

2.
Adult height is a highly heritable trait in that multiple genes are involved. Recent genome‐wide association studies have identified a novel single‐nucleotide polymorphism (SNP) rs1042725 in the high mobility group‐A2 gene (HMGA2) and shown it to be associated with human height in Caucasian populations. We performed a replication study to examine the associations between SNPs in HMGA2 and adult height in the Japanese population based on autopsy cases. Although we could not confirm a significant association between rs1042725 in HMGA2 and adult height, another SNP, rs7968902, in the gene achieved significance for its association in the same populations, and the effect was the same as that documented previously. These findings permit us to conclude that the SNPs in HMGA2 are common variants influencing human height across different populations. Moreover, a worldwide population study of these SNPs using 14 different populations including Asians, Africans and Caucasians demonstrated that both haplotypes and genotypes for three height‐related SNPs (rs1042725, rs7968682 and rs7968902) in HMGA2 were distributed in an ethnicity‐dependent manner. This information will be useful for clarifying the genetic basis of human height.  相似文献   

3.
IL-28RA is one of the important candidate genes for complex trait of genetic diseases, but there is no published information of the genetic variation in this gene. We scanned the seven exons and their boundary introns sequence of IL-28RA including the promoter regions to analyze genetic variation sites, and identified eighteen single nucleotide polymorphisms (SNPs) and two variation sites. We chose seven SNPs (g.-1193 A>C, g.-30 C>T, g.17654 C>T, g.27798 A>G, g.31265 C>T, g.31911 C>T and g.32349 G>A) of them for large sample size genotyping, and assessed the association of genotype and allele frequencies of these SNPs between allergic rhinitis patients and non-allergic rhinitis controls. We also compared the genotype frequencies between Korean controls and Han Chinese control or Korean Chinese control. We investigated the frequencies of haplotype constructed by these SNPs between allergic rhinitis patients and non-allergic rhinitis controls. Our results suggested that the g.32349 G>A polymorphism of IL-28RA might be associated with susceptibility to allergic rhinitis (P=0.032), but seems to have no relationship with serum total IgE levels. The haplotype frequencies by these SNPs also show significant association between controls and allergic rhinitis patients.  相似文献   

4.
Oxidative stress is a crucial event underlying several pediatric neurological diseases, such as the central nervous system (CNS) tumors, autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). Neuroprotective therapy with natural compounds used as antioxidants has the potential to delay, ameliorate or prevent several pediatric neurological diseases. The present review provides an overview of the most recent research outcomes following quercetin treatment for CNS tumors, ASD and ADHD as well as describes the potential in vitro and in vivo ameliorative effect on oxidative stress of bioactive natural compounds, which seems like a promising future therapy for these diseases. The neuroprotective effects of quercetin against oxidative stress can also be applied in the management of several neurodegenerative disorders with effects such as anti-cancer, anti-inflammatory, anti-viral, anti-obesity and anti-microbial. Therefore, quercetin appears to be a suitable adjuvant for therapy against pediatric neurological diseases.  相似文献   

5.
Two single nucleotide polymorphisms (SNPs) of 5,10-methylenetetrahydrofolate reductase (MTHFR) gene, A1298C and C677T, were widely considered to be related with various neoplasia disorders. We established a simple and effective capillary electrophoresis (CE) method for detection of two SNPs in MTHFR gene simultaneously. DNA samples were amplified by multiplex PCR with universal fluorescence-labeled primer and analyzed by single-strand conformation polymorphism (SSCP)-CE method. The CE method was performed using 1.5% hydroxyethyl cellulose in 1× TBE buffer containing 1 M urea. The PCR products after SSCP procedure were electrokinetically injected at −10 kV, 30 s. Separation voltage was −6 kV and the temperature was set at 20 °C. The optimal SSCP-CE method was applied to detect two polymorphisms in MTHFR gene of acute lymphoblastic leukemia (ALL) and attention-deficit/hyperactivity disorder (ADHD) patients. Genotyping results were evaluated in terms of relationships between outcomes for ADHD patients after ALL chemotherapy and ALL disease. The SSCP-CE method and multiplex PCR with universal fluorescence primer were used as the fast technique for screening two SNPs in MTHFR gene, A1298C and C677T. The genotyping data were coincident with DNA sequencing. This SSCP-CE method was found feasible for detecting mutation of MTHFR gene in populations.  相似文献   

6.
《Electrophoresis》2017,38(6):876-885
We have developed and validated a novel method for quantitative detection of SNPs by using pyrosequencing with di‐base addition (PDBA). Based on the principle that the signal intensity is proportional to the template concentration within a linear concentration range, linear formula (Y = AX + B ) for each genotype is established, and the relationship between two genotypes of a single SNP can be resolved by corresponding linear formulas. Here, PDBA assays were developed to detect variants rs6717546 and rs4148324, and the linear formulas for each genotype of rs6717546 and rs4148324 were established. The method allowed to quantitatively determine each genotype and showed 100% accordant results against a panel of defined mixtures. A set of 24 template fragments containing variants rs6717546 or rs4148324 was tested to evaluate the method. Our results showed that allele frequency of each genotype was accurately quantified, with results comparable to those of conventional pyrosequencing. Furthermore, this method was capable of detecting alleles with frequencies as low as 3%, which was more sensitive than ∼5 to ∼7% level detected by conventional pyrosequencing. This method offers high sensitivity, reproducibility, and relatively low costs, and thus could provide a much‐needed approach for quantitative analysis of SNPs in clinical samples.  相似文献   

7.
Benzene, a recognized hematotoxicant and carcinogen, can damage the human immune system. We studied the association between single nucleotide polymorphisms (SNPs) in genes involved in innate immunity and benzene hematotoxicity in a cross-sectional study of workers exposed to benzene (250 workers and 140 controls). A total of 1,236 tag SNPs in 149 gene regions of six pathways were included in the analysis. Six gene regions were significant for their association with white blood cell (WBC) counts (MBP, VCAM1, ALOX5, MPO, RAC2, and CRP) based on gene-region (P<0.05) and SNP analyses (FDR<0.05). VCAM1 rs3176867, ALOX5 rs7099684, and MPO rs2071409 were the three most significant SNPs. They showed similar effects on WBC subtypes, especially granulocytes, lymphocytes, and monocytes. A 3-SNP block in ALOXE3 (rs7215658, rs9892383, and rs3027208) showed a global association (omnibus P = 0.0008) with WBCs even though the three SNPs were not significant individually. Our study suggests that polymorphisms in innate immunity genes may play a role in benzene-induced hematotoxicity; however, independent replication is necessary.  相似文献   

8.
The dysregulation of the dopaminergic system has been implicated in the pathophysiology of major psychosis, including schizophrenia, with dopamine receptor genes (DRDs) presently targeted as the most promising candidate genes. We investigated DRD1-5 for association with schizophrenia using a multi-stage approach in a Korean sample. One hundred forty-two SNPs in DRD1-5 were selected from the dbSNP, and the associations of each SNP were then screened and typed by MALDI-TOF mass spectrometry using pooled DNA samples from 150 patients with major psychosis and 150 controls. Each of the suggested SNPs was then genotyped and tested for an association within the individual samples comprising each pool. Finally, the positively associated SNPs were genotyped in an extended sample of 270 patients with schizophrenia and 350 controls. Among the 142 SNPs, 88 (62%) SNPs in our Korean population were polymorphic. At the pooling stage, 10 SNPs (DRD1: 2, DRD2: 3, and DRD4: 5) were identified (P<0.05). SNPs rs1799914 of DRD1 (P=0.046) and rs752306 of DRD4 (P=0.017) had significantly different allele frequencies in the individually genotyped samples comprising the pool. In the final stage, with the extended sample, the suggestive association of DRD4 with rs752306 was lost, but the association of DRD1 with rs1799914 gained greater significance (P=0.017). In these large-scale multi-stage analyses, we were able to find a possible association between DRD1 and schizophrenia. These findings suggested the potential contribution of a multi-step strategy for finding genes related to schizophrenia.  相似文献   

9.
The enabled homolog gene (ENAH, hMena) is abundantly expressed in mesangial tissue, and might play an important role in inflammatory processes of IgA nephropathy (IgAN). The present study was conducted to investigate the association between single nucleotide polymorphisms (SNPs) of the ENAH and childhood IgAN. We analyzed 12 SNPs of ENAH in 176 patients with childhood IgAN and 397 healthy controls. In addition, IgAN patients were dichotomized and compared with respect to several clinical and pathological parameters. Genotyping data showed significant differences between IgAN patients and controls in the frequency of rs2039620, rs12034829, and rs3795443. On comparison of patients with proteinuria to those without proteinuria (≤ or > 4 mg/m2/h), rs12043633 was significantly different between the two groups. With regard to maximum proteinuria (≤ or > 4 mg/m2/h), rs3795443, rs4653643, rs6751, rs10799319, rs7555139, rs576861, and rs487591 showed significant allele frequency differences. For patients with and without gross hematuria, rs4653643, rs6751, rs10799319, rs7555139, rs576861, and rs487591 showed significant allele frequency differences. The rs3795443 was found to be associated with progression of pathological findings. Our results suggest that ENAH polymorphisms are associated with increased susceptibility, development of proteinuria and gross hematuria, and pathological progression of childhood IgAN.  相似文献   

10.
The applicability of ion-pair reversed-phase high-performance liquid chromatography hyphenated to electrospray ionization time-of-flight mass spectrometry (ICEMS) for the haplotyping of five SNPs (rs769223, rs4818, rs4986871, rs8192488, rs4680) located within exon 4 of the human catechol-O-methyltransferase (COMT, EC 2.1.1.6) gene is demonstrated. Two differently sized products of polymerase chain reaction—a 71-bp amplicon partially covering the sequence of a 124-bp amplicon—were used to determine unequivocally the allelic states of the single nucleotide polymorphisms linked on both chromosomes. The two amplicons were co-loaded onto the chromatographic column and simultaneously analyzed within a single gradient run. Using the described strategy, 101 individuals representing an Austrian population sample were typed. The obtained haplotype frequencies will serve as reference values in future association studies to examine the impact of the COMT gene on neuropsychiatric disorders. Additionally, two newly discovered polymorphic sites within the sequence of the COMT gene are described (a synonymous C>T mutation at the third position of the amino acid codon 99 in the soluble COMT protein or 149 in the membrane-bound COMT protein; a non-synonymous G>A substitution at the second position of the amino acid codon 95 in the soluble COMT protein or 145 in the membrane-bound-COMT protein).  相似文献   

11.
Apoptosis is described as a mechanism of cell death occurring after adequate cellular harm. Deregulation of apoptosis occurs in many human conditions such as autoimmune disorders, ischemic damage, neurodegenerative diseases and different cancer types. Information relating miRNAs to cancer is increasing. miRNAs can affect development of cancer via many different pathways, including apoptosis. Polymorphisms in miRNA genes or miRNA target sites (miRSNPs) can change miRNA activity. Although polymorphisms in miRNA genes are very uncommon, SNPs in miRNA-binding sites of target genes are quite common. Many researches have revealed that SNPs in miRNA target sites improve or decrease the efficacy of the interaction between miRNAs and their target genes. Our aim was to specify miRSNPs on CASP3 gene (caspase-3) and SNPs in miRNA genes targeting 5′UTR and coding exons of CASP3, and evaluate the effect of these miRSNPs and SNPs of miRNA genes with respect to apoptosis. We detected 141 different miRNA binding sites (126 different miRNAs) and 7 different SNPs in binding sites of miRNA in 5′UTR and CDS of CASP3 gene. Intriguingly, miR-339-3p’s binding site on CASP3 has a SNP (rs35372903, G/A) on CASP3 5′UTR and its genomic sequence has a SNP (rs565188493, G/A) at the same nucleotide with rs35372903. Also, miR-339-3p has two other SNPs (rs373011663, C/T rs72631820, A/G) of which the first is positioned at the binding site. Here, miRSNP (rs35372903) at CASP3 5′UTR and SNP (rs565188493) at miR-339-3p genomic sequence cross-matches at the same site of binding region. Besides, miR-339-3p targets many apoptosis related genes (ZNF346, TAOK2, PIM2, HIP1, BBC3, TNFRSF25, CLCF1, IHPK2, NOL3) although it had no apoptosis related interaction proven before. This means that miR-339-3p may also have a critical effect on apoptosis via different pathways other than caspase-3. Hence, we can deduce that this is the first study demonstrating a powerful association between miR-339-3p and apoptosis upon computational analysis.  相似文献   

12.
Human granulocyte colony stimulating factor (hG-CSF), known as CSF3, plays an important role in the growth, differentiation, proliferation, survival, and activation of the granulocyte cell lineage such as neutrophils and their precursors. Functional reduction in native CSF3 protein results in reduced proliferation and activation of neutrophils and leads to neutropenia. Single nucleotide polymorphisms (SNPs) in the CSF3 gene may have deleterious effects on the CSF3 protein function. This study was undertaken to find the functional SNPs in the human CSF3 gene. Results suggest that 18.9% of all the SNPs in the dbSNP database for CSF3 gene were present in the coding region. Out of 59 non-synonymous SNPs (nsSNPs), 26 nsSNPs were predicted to be non-tolerable by SIFT whereas 18 and 7 nsSNPs were predicted as probably damaging and possibly damaging, respectively by PolyPhen. Among this 31 nsSNPs, 16 nsSNPs were identified to be potentially deleterious by PANTHER server, and 4 nsSNPs were found to be neutral by PROVEAN. SNPAnalyzer predicted 7 nsSNPs to be neutral phenotype and the remaining 24 nsSNPs to be associated with diseases. Among the predicted nsSNPs, rs144408123, rs144408123, rs145136406, rs145311241, rs373191696, rs762945096, rs763688260, rs767572172, rs775326370, rs777777864, rs777983866, rs781596455, rs139072004, rs757612684, rs772911210, rs139072004, rs746634544, rs749993200, rs763426127, rs772466210 were identified as deleterious and potentially damaging. I-Mutant analysis revealed that th 20 nsSNPs were important for protein stability of CSF3. Therefore, th 20 nsSNPs may be used for the wider population-based genetic studies and also should be taken into account while engineering the recombinant CSF3 protein for clinical use.  相似文献   

13.
Interleukin 33 (IL-33) is the latest member of the IL-1 cytokine family, which plays both pro - and anti-inflammatory functions. Numerous Single-nucleotide polymorphisms (SNPs) in the IL-33 gene have been recognized to be associated with a vast variety of inflammatory disorders. SNPs associated studies have become a crucial approach in uncovering the genetic background of human diseases. However, distinguishing the functional SNPs in a disease-related gene from a pool of both functional and neutral SNPs is a major challenge and needs multiple experiments of hundreds or thousands of SNPs in candidate genes. This study aimed to identify the possible deleterious SNPs in the IL-33 gene using bioinformatics predictive tools. The nonsynonymous SNPs (nsSNPs) were analyzed by SIFT, PolyPhen, PROVEAN, SNP&GO, MutPred, SNAP, PhD SNP, and I-Mutant tools. The Non-coding SNPs (ncSNPs) were also analyzed by SNPinfo and RegulomeDB tools. In conclusion, our in-silico analysis predicted 5 nsSNPs and 22 ncSNPs as potential candidates in the IL-33 gene for future genetic association studies.  相似文献   

14.
The etiology and pathogenesis of type 2 diabetes mellitus (T2DM) are not completely understood although it is often associated with other conditions such as obesity, hypertension, and dyslipidemia. Lipoprotein lipase (LPL) is a key enzyme in human lipid metabolism that facilitates the removal of triglyceride-rich lipoproteins from the bloodstream. LPL hydrolyzes the core of triglyceride-rich lipoproteins (chylomicrons and very low density lipoprotein) into free fatty acids and monoacylglycerol. To gain insight into the possible role of LPL in T2DM, nine single nucleotide polymorphisms (SNPs) of LPL were analyzed for the association with T2DM using 944 unrelated Koreans, including 474 T2DM subjects and 470 normal healthy controls. Of the nine LPL SNPs we analyzed, a significant association with multiple tests by the false discovery rate (FDR) was observed between T2DM and SNP rs343 (+13836C>A in intron 3). SNP rs343 was also marginally associated with some of T2DM-related phenotypes including total cholesterol, high density lipoprotein cholesterol (HDLc), and log transformed glycosylated hemoglobin in 470 normal controls, although no significant association was detected by multiple tests. In total, our results suggest that the control of lipid level by LPL in the bloodstream might be an important factor in T2DM pathogenesis in the Korean population.  相似文献   

15.
Five SNPs in the human DNase II gene have been reported to be associated with rheumatoid arthritis (RA). Genotype and haplotype analysis of 14 SNPs, nine SNPs of which reported in the NCBI dbSNP database in addition to these five SNPs, was performed in healthy subjects. The enzymatic activities of the amino acid substituted DNase II corresponding to each SNP and serum DNase II in healthy Japanese, and promoter activities derived from each haplotype of the RA‐related SNPs were measured. Significant correlations between genotype in each RA‐related SNP and enzymatic activity levels were found; alleles associated with RA exhibited a reduction in serum DNase II activity. Furthermore, the promoter activities of each reporter construct corresponding to predominant haplotypes in three SNPs in the promoter region of the gene exhibited significant correlation with levels of serum DNase II activity. These findings indicate these three SNPs could alter the promoter activity of DNASE2, leading to a decline in DNase II activity in the serum through gene expression. Since the three SNPs in the promoter region of the DNase II gene could affect in vivo DNase II activity through reduction of the promoter activity, it is feasible to identify these SNPs susceptible to RA.  相似文献   

16.
Single nucleotide polymorphisms (SNPs) are one of the most common markers in mammals. Rapid, accurate, and multiplex typing of SNPs is critical for subsequent biological and genetic research. In this study, we have developed a novel method for multiplex genotyping SNPs in mice. The method involves allele‐specific PCR amplification of genomic DNA with two stem‐loop primers accompanied by two different universal fluorescent primers. Blue and green fluorescent signals were conveniently detected on a DNA sequencer. We verified four SNPs of 65 mice based on the novel method, and it is well suited for multiplex genotyping as it requires only one reaction per sample in a single tube with multiplex PCR. The use of universal fluorescent primers greatly reduces the cost of designing different fluorescent probes for each SNP. Therefore, this method can be applied to many biological and genetic studies, such as multiple candidate gene testing, genome‐wide association study, pharmacogenetics, and medical diagnostics.  相似文献   

17.
In SCF (Skp, Cullin, F-box) ubiquitin-protein ligase complexes, S-phase kinase 2 (SKP2) is one of the major players of F-box family, that is responsible for the degradation of several important cell regulators and tumor suppressor proteins. Despite of having significant evidence for the role of SKP2 on tumorgenesis, there is a lack of available data regarding the effect of non-synonymous polymorphisms. In this communication, the structural and functional consequences of non-synonymous single nucleotide polymorphisms (nsSNPs) of SKP2 have been reported by employing various computational approaches and molecular dynamics simulation. Initially, several computational tools like SIFT, PolyPhen-2, PredictSNP, I-Mutant 2.0 and ConSurf have been implicated in this study to explore the damaging SNPs. In total of 172 nsSNPs, 5 nsSNPs were identified as deleterious and 3 of them were predicted to be decreased the stability of protein. Guided from ConSurf analysis, P101L (rs761253702) and Y346C (rs755010517) were categorized as the highly conserved and functional disrupting mutations. Therefore, these mutations were subjected to three dimensional model building and molecular dynamics simulation study for the detailed structural consequences upon the mutations. The study revealed that P101L and Y346C mutations increased the flexibility and changed the structural dynamics. As both these mutations are located in the most functional regions of SKP2 protein, these computational insights might be helpful to consider these nsSNPs for wet-lab confirmatory analysis as well as in rationalizing future population based studies and structure based drug design against SKP2.  相似文献   

18.
BackgroundThe statistical tests for single locus disease association are mostly under-powered. If a disease associated causal single nucleotide polymorphism (SNP) operates essentially through a complex mechanism that involves multiple SNPs or possible environmental factors, its effect might be missed if the causal SNP is studied in isolation without accounting for these unknown genetic influences. In this study, we attempt to address the issue of reduced power that is inherent in single point association studies by accounting for genetic influences that negatively impact the detection of causal variant in single point association analysis. In our method we use propensity score (PS) to adjust for the effect of SNPs that influence the marginal association of a candidate marker. These SNPs might be in linkage disequilibrium (LD) and/or epistatic with the target-SNP and have a joint interactive influence on the disease under study. We therefore propose a propensity score adjustment method (PSAM) as a tool for dimension reduction to improve the power for single locus studies through an estimated PS to adjust for influence from these SNPs while regressing disease status on the target-genetic locus. The degree of freedom of such a test is therefore always restricted to 1.ResultsWe assess PSAM under the null hypothesis of no disease association to affirm that it correctly controls for the type-I-error rate (<0.05). PSAM displays reasonable power (>70%) and shows an average of 15% improvement in power as compared with commonly-used logistic regression method and PLINK under most simulated scenarios. Using the open-access multifactor dimensionality reduction dataset, PSAM displays improved significance for all disease loci. Through a whole genome study, PSAM was able to identify 21 SNPs from the GAW16 NARAC dataset by reducing their original trend-test p-values from within 0.001 and 0.05 to p-values less than 0.0009, and among which 6 SNPs were further found to be associated with immunity and inflammation.ConclusionsPSAM improves the significance of single-locus association of causal SNPs which have had marginal single point association by adjusting for influence from other SNPs in a dataset. This would explain part of the missing heritability without increasing the complexity of the model due to huge multiple testing scenarios. The newly reported SNPs from GAW16 data would provide evidences for further research to elucidate the etiology of rheumatoid arthritis. PSAM is proposed as an exploratory tool that would be complementary to other existing methods. A downloadable user friendly program, PSAM, written in SAS, is available for public use.  相似文献   

19.
Osteonecrosis of the femoral head (ONFH) is known as death of the cellular portion of the femoral head due to an interruption in the vascular supply. The underlying pathophysiology regarding bone cell death remains uncertain. Recently, several studies have shown that autoimmune disorders were related to the development of osteonecrosis. This study investigated the genetic effects of Interleukin 23 receptor (IL23R) polymorphisms regarding the risk of ONFH. Ten SNPs were selected and genotyped in 443 ONFH patients and 273 control subjects in order to perform the genetic association analysis. It was found that polymorphisms of the IL23R gene (rs4655686, rs1569922 and rs7539625) were significantly associated with an increased risk of ONFH (P values; 0.0198-0.0447, OR; 1.30-1.49). Particularly, a stratified analysis based on etiology (alcohol, steroid or idiopathic) showed that the associations between these polymorphisms and ONFH were most significant in idiopathic ONFH patients (P values; 0.0001-0.0150, OR; 1.45-2.17). These results suggest that IL23R polymorphisms may play an important role in the development of ONFH.  相似文献   

20.
Microhaplotype markers are emerging forensic genetic markers, which may supplement existing markers. Consisting of two to four SNPs with an extent of <200 bp, microhaplotype can be genotyped through massively parallel sequencing technology. Articles that have been published suggested that microhaplotype markers have good application prospect in forensics. Multiallelic haplotype loci are potentially important in certain forensic works, as the stutter and high mutation rate of short tandem repeats and the low polymorphism of single nucleotide polymorphisms may limit the power of these two kind of regular markers. In this study, we explored the potential of 11 new microhaplotype loci in kinship analysis. The results suggested that these loci have relatively high polymorphic information in different populations worldwide and relatively high system effectiveness in the kinship analysis. Microhaplotypes have potential for forensic kinshipg analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号