首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
微波提取对挥发油化学成分的影响   总被引:3,自引:0,他引:3  
采用无溶剂微波辅助提取与微波水蒸气蒸馏法提取薄荷叶和花椒挥发油,气相色谱-质谱(GC-MS)分析挥发油化学成分,与传统的水蒸气蒸馏对比,考察了微波对挥发油化学成分的影响.结果表明,微波促使薄荷叶挥发油中的薄荷醇氧化,转变为长叶薄荷酮和少量的薄荷呋喃酮.花椒挥发油中的按油素等化合物受质子的催化,在长时间温度较高的提取条件...  相似文献   

2.
近年来,无溶剂微波提取法被广泛的应用到植物活性组分的提取~([1]).通过在样品中加入一些微波吸收介质,可以改进无溶剂微波提取法~([2]).由于离子液体具有良好的热稳定性,被广泛用于绿色溶剂提取分析方面~([3,4]).本研究以离子液体为微波吸收介质,加入到样品中,提取肉桂中的挥发性组分,并用GC-MS分析了挥发性组分.  相似文献   

3.
1引言微波加热效率高低主要取决于体系中物质吸收微波的能力大小,由于非极性溶剂不吸收微波因而通常不能单独作为微波辅助提取的提取溶剂。乙醚是一种常用的非极性溶剂,在蒸馏-提取法(simultaneous distillation and solvent extraction,SDE)中被用作提取溶剂,石墨是一种良好的微波吸收介质,本实验通过在乙醚中加入石墨建立了孜然中挥发油组分的非极性溶剂微波提取法(non-polar solvent microwave extraction,NPSME),  相似文献   

4.
将无溶剂微波预处理与NaOH搅拌提取相结合提取辣椒素类物质(Capsaicinoids)。在干辣椒样品中加入微波吸收介质羰基铁粉(CIP),对干辣椒样品进行微波预处理。根据辣椒素与NaOH之间可发生特异性反应,利用NaOH溶液从辣椒中提取两种主要的辣椒素类化合物---辣椒素(Capsaicin,C)和二氢辣椒素(Dihydrocapsaicin,DHC)。实验表明,本方法提取时间短(10min),提取率高,并可有效避免有机溶剂对实验室的污染。  相似文献   

5.
采用微波辅助蒸汽蒸馏提取法对矮化芳樟枝或叶中挥发油进行提取,用气相色谱-质谱法测定其中的挥发油成分。所得结果与传统蒸汽蒸馏提取法数据对比,两种方法所得枝叶挥发油主要成分和含量基本相同;但微波辅助蒸汽蒸馏提取法仅需37.5min即可达到最高提取率。  相似文献   

6.
将干八角粉碎至过2.00mm孔径的药筛,取20g样品间歇性喷雾加水至其含水量(质量分数)达50%,置于圆底烧瓶中,用LWMC-204微波化学反应器在180W微波功率进行无溶剂微波辅助提取(SFME),所得提取液用无水硫酸钠干燥置于4℃保存。此溶液用于气相色谱-质谱法测定其中的挥发油组分,将所得结果与SFME法和水蒸气蒸馏法(SD)所得数据对比,可知SFME法提取挥发油有以下特点:①该法仅需30min提取即可达到其最高提取率7.71%;②经此法分离后在挥发油中共测得25种化合物,达总量为98.94%;③所测得的含氧单萜类化合物高于SD法提取所得;④所测得挥发油的主要成分反式茴香脑的含量较SD法提取所得的量高1.4倍。  相似文献   

7.
不同提取方法对蜘蛛香挥发油的研究   总被引:1,自引:0,他引:1  
胡晓娜  周欣  李明  刘海  周伟  陈华国 《分析试验室》2008,27(Z1):186-189
考察微波辅助萃取法和水蒸气蒸馏法对提取蜘蛛香挥发油化学成分的影响。分别采用微波辅助萃取法和水蒸气蒸馏法提取蜘蛛香挥发油,并用气相色谱质谱联用(GC-MS)对所提取的挥发油化学成分进行分析。微波辅助萃取法和水蒸气蒸馏法制得的蜘蛛香挥油化学成分有一定的差别。  相似文献   

8.
离子液体是从传统的高温熔盐演变而来的,与常规的离子化合物较大差异~([1]).从微波化学角度看,离子液体具有很高的极化率,可作为一种很好的微波吸收介质而产生很快的加热速度.离子液体微波辅助提取法一般是以离子液体为提取剂,结合了微波加热和离子液体的优点,提高了提取效率~([2]).本研究以离子液体为微波吸收介质对人参中的活性成分进行了提取,并与水蒸气蒸馏提取法进行了对比.  相似文献   

9.
使用自行设计的微波吸收介质管辅助加热样品, 建立了一种新的微波加速提取法, 并以正己烷为提取溶剂, 利用改装的便携式微波提取仪提取了水果中的4种有机磷农药. 将微波介质密封于玻璃管内制成微波介质管, 使微波介质可重复使用, 同时加快了提取速度. 提取产物无需纯化, 可直接用于气相色谱-质谱联用(GC-MS)分析. 自行设计改装的交直流两用便携式微波提取仪可用于野外现场的快速样品前处理. 以水果样品为例, 对提取溶剂的种类、 料液比、 提取温度及提取时间等条件进行了优化, 结果表明该方法简便、 快速且高效. 4种有机磷农药的回收率为79.4% ~107.6%, RSD<12.20%, 检出限为0.15 ~0.42 μg/kg.  相似文献   

10.
采用水蒸汽蒸馏法、微波辅助水蒸气蒸馏法提取杜香挥发油,用气相色谱–质谱(GC–MS)法分析鉴定,并用GC/MS总离子流色谱峰的峰面积归一化法确定挥发油成分的相对质量分数.结果显示,从水蒸汽蒸馏法、微波辅助水蒸气蒸馏法所得挥发油中分别鉴定出了34和33种化合物,2种提取方法测得挥发油的主要化学成分基本相同,均为β-水芹烯...  相似文献   

11.
An improved solvent-free microwave extraction(ISFME) was used for the extraction of essential oil from dried Cinnamomum cassia Presl. Two kinds of solid microwave absorption media[carbonyl iron powder(CIP) and graphite powder(GP)] were used. When ISFME was applied, the heating rate was enhanced and the extraction time was obviously shorter than that consumed in conventional solvent-free microwave extraction(CSFME). Twenty-eight kinds of compounds in the essential oil were identified, and the total content fractions of the compounds obtained by CIP-ISFME, GP-ISFME, CSFME, and hydrodistillation(HD) were 96.65%, 96.06%, 97.22%, and 96.29%, respectively. The compounds in the essential oil obtained from Cinnamomum cassia Presl. by ISFME, CSFME, and HD were compared and the quantity of the essential oil was almost the same. The ISFME has been proved to be a feasible way to extract essential oil from dried samples, and there are several obvious advantages in ISFME over those of HD and CSFME, for example, shorter extraction time(30 min) and lower energy consumption.  相似文献   

12.
Wang Z  Ding L  Li T  Zhou X  Wang L  Zhang H  Liu L  Li Y  Liu Z  Wang H  Zeng H  He H 《Journal of chromatography. A》2006,1102(1-2):11-17
Solvent-free microwave extraction (SFME) is a recently developed green technique which is performed in atmospheric conditions without adding any solvent or water. SFME has already been applied to extraction of essential oil from fresh plant materials or dried materials prior moistened. The essential oil is evaporated by the in situ water in the plant materials. In this paper, it was observed that an improved SFME, in which a kind of microwave absorption solid medium, such as carbonyl iron powders (CIP), was added and mixed with the sample, can be applied to extraction of essential oil from the dried plant materials without any pretreatment. Because the microwave absorption capacity of CIP is much better than that of water, the extraction time while using the improved SFME is no more than 30 min using a microwave power of 85 W. Compared to the conventional SFME, the advantages of improved SFME were to speed up the extraction rate and need no pretreatment. Improved SFME has been compared with conventional SFME, microwave-assisted hydrodistillation (MAHD) and conventional hydrodistillation (HD) for the extraction of essential oil from dried Cuminum cyminum L. and Zanthoxylum bungeanum Maxim. By using GC-MS system the compositions of essential oil extracted by applying four kinds of extraction methods were identified. There was no obvious difference in the quality of essential oils obtained by the four kinds of extraction methods.  相似文献   

13.
A new method, non-polar solvent microwave-assisted extraction (NPSMAE), was applied to the extraction of essential oil from Zingiber officinale Rosc. in closed-vessel system. By adding microwave absorption mediumcarbonyl iron powders (CIP) into extraction system, the essential oil was extracted by the non-polar solvent (ether) which can be heated by CIP. The constituents of essential oil obtained by NPSMAE were comparable with those obtained by hydrodistillation (HD) by GC-MS analysis, which indicates that NPSMAE is a feasible way to extract essential oil from dried plant materials. The NPSMAE took much less extraction time (5 min) than HD (180 min), and its extraction efficiency was much higher than that of conventional polar solvent microwave-assisted extraction (PSMAE) and mixed solvent microwave-assisted extraction (MSMAE). It can be a good alternative for the extraction of volatile constituents from dried plant samples.  相似文献   

14.
A new method of extracting essential oils from dried plant materials has been studied. By adding a microwave-absorption medium (MAM) to a reactor, solvent-free microwave extraction (SFME) was improved and can be used to extract essential oils from dried plant material without pretreatment. With a microwave irradiation power of 85 W it took only approximately 30 min to extract the essential oils completely. The whole extraction process is simple, rapid, and economical. Three types of MAM, iron carbonyl powder (ICP), graphite powder (GP), and activated carbon powder (ACP), and two types of dried plant material, Illicium verum Hook. f. and Zingiber officinale Rosc., were studied. The results were compared with those obtained by use of conventional SFME, microwave-assisted hydrodistillation (MAHD), and conventional hydrodistillation (HD), and the conclusion drawn was that improved SFME was a feasible means of extracting essential oils from dried plant materials, because there were few differences between the composition of the essential oils extracted by improved SFME and by the other methods.  相似文献   

15.
Ionic liquid (IL) was used as the microwave absorption medium to extract essential oils from dried Cinnamomum cassia Presl and Forsythia suspensa (Thunb.) Vahl, and the ionic liquid microwave extraction (ILME) was developed. Some experimental parameters for ILME were examined. The proposed method was compared with other methods, including hydrodistillation (HD), microwave hydrodistillation (MHD), solvent‐free microwave extraction (SFME) and improved solvent‐free microwave extraction (ISFME). Experimental results showed that compared with other extraction methods the ILME had some advantages, such as time‐saving, simplicity and usage of green solvents. The extraction time was less than 18 min at the microwave power of 440 W and 1.5 mL of ionic liquid was required. The constituents of essential oils obtained by the five methods are not obviously different.  相似文献   

16.
Headspace single drop microextraction (HS-SDME) coupled with microwave extraction (ME) was developed and applied to the extraction of the essential oil from dried Syzygium aromaticum (L.) Merr. et Perry and Cuminum cyminum L. The operational parameters, such as microdrop volume, microwave absorption medium (MAM), extraction time, and microwave power were optimized. Ten microliters of decane was used as the microextraction solvent. Ionic liquid and carbonyl iron powder were used as MAM. The extraction time was less than 7 min at the microwave power of 440 W. The proposed method was compared with hydrodistillation (HD). There were no obvious differences in the constituents of essential oils obtained by the two methods.  相似文献   

17.
微波萃取-气相色谱法测定血液中的甲基苯丙胺   总被引:2,自引:0,他引:2  
建立了人体血液中甲基苯丙胺的微波萃取-气相色谱测定方法。分别考察了萃取溶剂种类、用量、样品pH值以及萃取温度、时间等因素对萃取率的影响,并与液-液萃取法进行比较。结果表明,在相同条件下,微波萃取率高于液-液萃取。血液中甲基苯丙胺的最佳提取条件为:调节血样pH为13,以乙酸乙酯为萃取溶剂,于30 ℃下微波提取 8 min。在此条件下平均萃取率达到81.4%,相对标准偏差为6.4%(n=5)。提取液经气相色谱-氢火焰离子化检测器检测,甲基苯丙胺和基体之间得到了很好的分离,对血液中甲基苯丙胺的最低检测限为220 μg/L。该方法是一种快速、准确、灵敏的测定血液中甲基苯丙胺的方法。  相似文献   

18.
Wang H  Zhao Q  Song W  Xu Y  Zhang X  Zeng Q  Chen H  Ding L  Ren N 《Talanta》2011,85(1):743-748
A simple and low-cost high-throughput dynamic microwave-assisted extraction (HTDMAE) device was firstly assembled and validated by the extraction of nicotine in mushroom samples. In this device, a household microwave oven was applied to provide the microwave energy; a vacuum pump was used to deliver the solvent. Compared with traditional dynamic microwave-assisted extraction method, the sample throughput and microwave energy utilization were improved by the HTDMAE, up to 20 samples could be treated simultaneously in 9 min. Taking extraction of nicotine in mushroom sample as an example, a method was established with extraction, separation and enrichment of nicotine in a single step by the device on-line coupled with solid-phase extraction (SPE). Nicotine was first extracted from the mushroom samples with water under the action of microwave energy, and then directly introduced into the SPE column which was packed with cation-exchange resins. Subsequently, the nicotine trapped on the resins was eluted with methanol-ammonia (95:5, v/v) and determined by high-performance liquid chromatography. The limit of detection of nicotine obtained is 5.6 μg kg(-1) in fresh mushroom sample. The recovery of nicotine in mushroom samples is in the range of 87.4-104.0%. The proposed method which significantly reduced the overall analysis time and increased sample throughput should be favored for routine analyse of complex solid sample.  相似文献   

19.
生物样品中苯丙胺类毒品的小体积液相萃取及GC/MS分析   总被引:1,自引:0,他引:1  
孟品佳  王燕燕  朱丹 《应用化学》2008,25(12):1448-0
小体积液相萃取;苯丙胺毒品;唾液;毛发;GC/MS  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号