首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The stability of advective flow in a rotating infinite horizontal fluid layer with rigid bound-aries is investigated for a small Prandtl number Pr = 0.1 and various Taylor numbers for perturbations of the hydrodynamic type. Within the framework of the linear theory of stability, neutral curves describing the dependence of the critical Grashof number on the wave number are obtained. The behavior of finite-amplitude perturbations beyond the stability threshold is studied numerically.__________Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, 2005, pp. 29–38.Original Russian Text Copyright © 2005 by Schwarz.  相似文献   

2.
Osiptsov  A. A. 《Fluid Dynamics》2005,40(2):221-232
Using the equations of a non-isothermal thin layer of viscous fluid with an exponential dependence of the viscosity on temperature, a family of hydrodynamic models of a cooling lava flow over a conical surface in the presence of mass supply is constructed. These models correspond to asymptotically different rates of heat exchange with the ambient medium. The evolution of the free-surface shape and the temperature fields is investigated numerically for a stationary mass supply. Using the matched asymptotic expansions method, solutions valid both near and very far from the mass supply region are constructed. The solutions obtained are compared with known analytical solutions for isothermal flow.__________Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, 2005, pp. 62–75.Original Russian Text Copyright © 2005 by Osiptsov.  相似文献   

3.
This paper is concerned with the initial stage of a compressible liquid jet impact onto an elastic plate. The fluid flow is governed by the linear wave equation, while the response of the plate is governed by the classical linear dynamical plate equation. The coupling between the fluid flow and the plate deflection is taken into account through the dynamic and kinematic conditions imposed on the wetted part of the plate. The problem is solved numerically by the normal mode method. The principal coordinates of the hydrodynamic pressure and plate deflections satisfy a system of ordinary differential and integral equations. A time stepping method based on the Runge–Kutta scheme is used for the numerical integration of the system. Calculations are performed for two-dimensional, axisymmetric and three-dimensional jet impacts onto an elastic plate. The effects of the impact conditions and the elastic properties of the plate on the magnitudes of the elastic deflections and bending stresses are analysed.  相似文献   

4.
The propagation and stability of nonlinear waves in a viscous compressible fluid with relaxation that satisfies a Theological equation of state of Oldroyd type are investigated. An equation that describes the structure of the wave perturbations and its evolution is derived subject to the condition of balance of the nonlinear dissipative and relaxation effects, and its solutions of the solitary wave type are analyzed.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 31–35, May–June, 1993.  相似文献   

5.
6.
The paper reports results of numerical—experimental investigation of the hydroelastic process in a polyimide pipeline filled with a fluid. The propagation of small perturbations in the fluid is considered in an acoustic approximation based on wave equations. The equations are integrated using the method of characteristics and a two–layer difference scheme. The elastic problem is solved by the finite element method and the Newmark difference –method. The stress—strain state of the pipeline is defined by a superposition of fast rod modes of motion and slow shell modes of motion. Satisfactory agreement between calculated and experimental data is obtained.  相似文献   

7.
The paper studies the interaction of a harmonically oscillating spherical body and a thin elastic cylindrical shell filled with a perfect compressible fluid and immersed in an infinite elastic medium. The geometrical center of the sphere is located on the cylinder axis. The acoustic approximation, the theory of thin elastic shells based on the Kirchhoff—Love hypotheses, and the Lamé equations are used to model the motion of the fluid, shell, and medium, respectively. The solution method is based on the possibility of representing partial solutions of the Helmholtz equations written in cylindrical coordinates in terms of partial solutions written in spherical coordinates, and vice versa. Satisfying the boundary conditions at the shell—medium and shell—fluid interfaces and at the spherical surface produces an infinite system of algebraic equations with coefficients in the form of improper integrals of cylindrical functions. This system is solved by the reduction method. The behavior of the hydroelastic system is analyzed against the frequency of forced oscillations.Translated from Prikladnaya Mekhanika, Vol. 40, No. 9, pp. 75–86, September 2004.  相似文献   

8.
In the present work, treating the artery as a tapered, thin walled, long and circularly conical prestressed elastic tube and using the longwave approximation, we have studied the propagation of weakly non-linear waves in such a fluid-filled elastic tube by employing the reductive perturbation method. By considering the blood as an incompressible inviscid fluid, the evolution equation is obtained as the Korteweg-de Vries equation with a variable coefficient. It is shown that this type of equation admits a solitary wave-type solution with variable wave speed. It is observed that, the wave speed decreases with distance for positive tapering while it increases for negative tapering. It is further observed that, the progressive wave profile for expanding tubes (a>0) becomes more steepened whereas for narrowing tubes (a<0) it becomes more flattened.  相似文献   

9.
New solutions are obtained for Novozhilov’s equation of toreidal shells having general slenderness ratio 0<a<1 (a=a/R). In contrast to the results by continued fractiontechnique, the exponents and expansion coefficients of our series solutions are all closed and explicit. The series satisfies shell equation identically. Convergence proof is also demonstrated.Explicit expressions for boundary effect and monodromy indices are also given. Finally, we discuss the possibility of applying the present method to solve the fundamental system of equations for elastic shells with rotational symmetry.  相似文献   

10.
Rayleigh waves in a linear elastic couple-stress medium are investigated; the constitutive equations involve a length parameter l that characterizes the microstructure of the material. With , cT=conventional transversal speed and q=wave number, an explicit expression is derived for the relation between , lq and Poisson's ratio ν. The Rayleigh speed turns out to be dispersive and always larger than the conventional Rayleigh speed. It is of interest that when lq=1 and ν≥0, it always holds that . The displacement field is investigated and it is shown that no Rayleigh wave motions exist when lq→∞ and when lq=1, ν≥0. Moreover, a principal change of the displacement field occurs when lq passes unity. The peculiarity that no Rayleigh wave motions exist when lq=1, ν≥0 may support the criticism by Eringen (1968) against the couple-stress theory adopted here as well as in much recent literature.  相似文献   

11.
We study the problem of asymptotics of unbounded solutions of differential equations of the form y″ = α0 p(t)ϕ(y), where α0 ∈ {−1, 1}, p: [a, ω[→]0, +∞[, −∞ < a < ω ≤ +∞, is a continuous function, and ϕ: [y 0, +∞[→]0, +∞[ is a twice continuously differentiable function close to a power function in a certain sense.__________Translated from Neliniini Kolyvannya, Vol. 8, No. 1, pp. 18–28, January–March, 2005.  相似文献   

12.
In this paper, the temporal development of small disturbances in a pressure‐driven fluid flow through a channel filled with a saturated porous medium is investigated. The Brinkman flow model is employed in order to obtain the basic flow velocity distribution. Under normal mode assumption, the linearized governing equations for disturbances yield a fourth‐order eigenvalue problem, which reduces to the well‐known Orr–Sommerfeld equation in some limiting cases solved numerically by a spectral collocation technique with expansions in Chebyshev polynomials. The critical Reynolds number Rec, the critical wave number αc, and the critical wave speed cc are obtained for a wide range of the porous medium shape factor parameter S. It is found that a decrease in porous medium permeability has a stabilizing effect on the fluid flow. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Approximate solutions of the Navier-Stokes equations are derived through the Laplace transform for two dimensional, incompressible, elastico-viscous flow past a flat porous plate. The flow is assumed to be independent of the distance parallel to the plate. General formulae for the velocity distribution, skin friction and displacement thickness as functions of the given free stream velocity and suction velocity are obtained. The response of skin friction to the impulsive perturbations in the stream and suction velocities is studied. It is found that the order of singularity in the skin friction at t=0 increases due to the elastic property of the fluid in the impulsive case. When the stream is accelerated the skin friction still anticipates the velocity but the time of anticipation is reduced from 1/4 to (1/4) (1—k), where k is the elastic parameter of the fluid. It is found that in general the resistance of the elastico-viscous fluids to an impulsive increase in the stream velocity is greater than the viscous fluids, the elasticoviscous fluids also reach the steady state earlier than the viscous fluids.  相似文献   

14.
The nonlinear stage of development of perturbations at a tangential magnetohydrodynamic discontinuity is investigated in the weakly subcritical and supercritical regimes. It is assumed that the fluid is incompressible and that the density and magnetic field, as well as the velocity, suffer a discontinuity. An equation describing the evolution of low-amplitude nonlinear perturbations is obtained. For periodic perturbations this equation reduces to an infinite system of ordinary differential equations for the amplitudes of the Fourier harmonics. The system is reduced to finite form by truncation and then integrated numerically. Calculations show that the evolution of an initially sinusoidal perturbation always ends with the appearance in the wave profile of an infinite derivative. This can take the form of either an infinitely sharp peak (knife-edge) or wave breaking.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 30–39, May–June, 1988.  相似文献   

15.
A Korteweg—de Vries (KV) approximation is constructed in this paper for the perturbations being propagated in elastic pipes filled with fluid. On the basis of the approximation constructed and the equation obtained for the perturbations of a finite-amplitude velocity, the water-hammer phenomenon is analyzed in the Zhukovskii formulation, and the water hammer in systems with preliminary longitudinal tension is considered separately. Special attention in the study of the perturbations is paid to the signal structure and evolution in the hydraulic line. Taking account of the inertial properties of the pipe in the approximation mentioned permitted the indication of new effects, in principle, which are essential for applied problems of the propagation of perturbations in elastic hydraulic lines. In particular, it is shown that the initial signal can be doubled in such lines by redistributing its intensity over the frequencies. It is established that the origination of an oscillating forerunner is possible in hydraulic lines with preliminary tension. Starting with [1], the water-hammer phenomenon was investigated in many papers, in [2], for example. The main attention in these papers was paid to the propagation velocity of the water hammer and its intensity. After simplification, the initial system of Zhukovskii equations contains no mechanism hindering the twisting of the wave profile, and, therefore, there is no possibility of stationary shock formation within the framework of this theory. Moreover, the Zhukovskii theory of the water hammer and of propagation of perturbations in elastic pipes results in the conclusion that the wave structure, velocity, and amplitude depend essentially on the characteristics of the initial perturbation and can differ significantly from the water hammer predicted by theories for powerful signals in sufficiently long pipes.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 3–8, July–August, 1976.  相似文献   

16.
In the weakly nonlinear approximation wave processes in flowing films, the propagation of concentration waves in chemical reactions, the hydrodynamic instability of a laminar flame, and thermocapillary convection in a thin layer are described by equations of the type ht + 4hhx + hxx + hxxxx=0. A special role in wave processes is played by nonlinear localized signals-solitary waves or solitons. In this paper the methods of the theory of dynamical systems are used to carry out a full investigation of solutions of the stationary soliton type for the above-mentioned equation.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 91–97, May–June, 1986.  相似文献   

17.
The non-classical symmetry method is used to determine particular forms of the arbitrary velocity and forcing terms in a linear wave equation used to model the propogation of waves in a linear elastic fluid. The behaviour of solutions derived using the non-classical symmetry method are discussed. Solutions satisfy a given initial profile and wave velocity. For some solutions the arbitrary forcing terms and wave velocity can be written in terms of the initial wave profile. Relationships between the arbitrary forcing, arbitrary velocity and the solution are derived.  相似文献   

18.
A three‐dimensional (3‐D) numerical method for solving the Navier–Stokes equations with a standard k–ε turbulence model is presented. In order to couple pressure with velocity directly, the pressure is divided into hydrostatic and hydrodynamic parts and the artificial compressibility method (ACM) is employed for the hydrodynamic pressure. By introducing a pseudo‐time derivative of the hydrodynamic pressure into the continuity equation, the incompressible Navier–Stokes equations are changed from elliptic‐parabolic to hyperbolic‐parabolic equations. In this paper, a third‐order monotone upstream‐centred scheme for conservation laws (MUSCL) method is used for the hyperbolic equations. A system of discrete equations is solved implicitly using the lower–upper symmetric Gauss–Seidel (LU‐SGS) method. This newly developed numerical method is validated against experimental data with good agreement. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
A system of nonlinear equations for describing the perturbations of the pressure and radius in fluid flow through a viscoelastic tube is derived. A differential relation between the pressure and the radius of a viscoelastic tube through which fluid flows is obtained. Nonlinear evolutionary equations for describing perturbations of the pressure and radius in fluid flow are derived. It is shown that the Burgers equation, the Korteweg-de Vries equation, and the nonlinear fourth-order evolutionary equation can be used for describing the pressure pulses on various scales. Exact solutions of the equations obtained are discussed. The numerical solutions described by the Burgers equation and the nonlinear fourth-order evolutionary equation are compared.  相似文献   

20.
The velocity field and the associated shear stress corresponding to the torsional oscillatory flow of a second grade fluid, between two infinite coaxial circular cylinders, are determined by means of the Laplace and Hankel transforms. At time t = 0, the fluid and both the cylinders are at rest and at t = 0 + , cylinders suddenly begin to oscillate around their common axis in a simple harmonic way having angular frequencies ω 1 and ω 2 . The obtained solutions satisfy the governing differential equation and all imposed initial and boundary conditions. The solutions for the motion between the cylinders, when one of them is at rest, can be obtained from our general solutions. Furthermore, the corresponding solutions for Newtonian fluid are also obtained as limiting cases of our general solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号