首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The generalized assignment problem (GAP), the 0–1 integer programming (IP) problem of assigning a set of n items to a set of m knapsacks, where each item must be assigned to exactly one knapsack and there are constraints on the availability of resources for item assignment, has been further generalized recently to include cases where items may be shared by a pair of adjacent knapsacks. This problem is termed the generalized assignment problem with special ordered sets of type 2 (GAPS2). For reasonably large values of m and n the NP-hard combinatorial problem GAPS2 becomes intractable for standard IP software, hence there is a need for the development of heuristic algorithms to solve such problems. It will be shown how a heuristic algorithm developed previously for the GAP problem can be modified and extended to solve GAPS2. Encouraging results, in terms of speed and accuracy, have been achieved.  相似文献   

2.
We present and compare three new compact linearizations for the quadratic 0-1 minimization problem, two of which achieve the same lower bound as does the “standard linearization”. Two of the linearizations require the same number of constraints with respect to Glover’s one, while the last one requires n additional constraints where n is the number of variables in the quadratic 0-1 problem. All three linearizations require the same number of additional variables as does Glover’s linearization. This is an improvement on the linearization of Adams, Forrester and Glover (2004) which requires n additional variables and 2n additional constraints to reach the same lower bound as does the standard linearization. Computational results show however that linearizations achieving a weaker lower bound at the root node have better global performances than stronger linearizations when solved by Cplex.  相似文献   

3.
In this paper we investigate certain aspects of infeasibility in convex integer programs, where the constraint functions are defined either as a composition of a convex increasing function with a convex integer valued function of n variables or the sum of similar functions. In particular we are concerned with the problem of an upper bound for the minimal cardinality of the irreducible infeasible subset of constraints defining the model. We prove that for the considered class of functions, every infeasible system of inequality constraints in the convex integer program contains an inconsistent subsystem of cardinality not greater than 2 n , this way generalizing the well known theorem of Scarf and Bell for linear systems. The latter result allows us to demonstrate that if the considered convex integer problem is bounded below, then there exists a subset of at most 2 n −1 constraints in the system, such that the minimum of the objective function subject to the inequalities in the reduced subsystem, equals to the minimum of the objective function over the entire system of constraints.  相似文献   

4.
A specialization of the dual simplex method is developed for solving the linear programming (LP) knapsack problem subject to generalized upper bound (GUB) constraints. The LP/GUB knapsack problem is of interest both for solving more general LP problems by the dual simplex method, and for applying surrogate constraint strategies to the solution of 0–1 Multiple Choice integer programming problems. We provide computational bounds for our method of o(n logn), wheren is the total number of problem variables. These bounds reduce the previous best estimate of the order of complexity of the LP/GUB knapsack problem (due to Witzgall) and provide connections to computational bounds for the ordinary knapsack problem.We further provide a variant of our method which has only slightly inferior worst case bounds, yet which is ideally suited to solving integer multiple choice problems due to its ability to post-optimize while retaining variables otherwise weeded out by convex dominance criteria.  相似文献   

5.
We consider semidefinite programs (SDPs) with equality constraints. The variable to be optimized is a positive semidefinite matrix X of size n. Following the Burer-Monteiro approach, we optimize a factor Y of size n × p instead, such that X = YYT. This ensures positive semidefiniteness at no cost and can reduce the dimension of the problem if p is small, but results in a nonconvex optimization problem with a quadratic cost function and quadratic equality constraints in Y. In this paper, we show that if the set of constraints on Y regularly defines a smooth manifold, then, despite nonconvexity, first- and second-order necessary optimality conditions are also sufficient, provided p is large enough. For smaller values of p, we show a similar result holds for almost all (linear) cost functions. Under those conditions, a global optimum Y maps to a global optimum X = YYT of the SDP. We deduce old and new consequences for SDP relaxations of the generalized eigenvector problem, the trust-region subproblem, and quadratic optimization over several spheres, as well as for the Max-Cut and Orthogonal-Cut SDPs, which are common relaxations in stochastic block modeling and synchronization of rotations. © 2019 Wiley Periodicals, Inc.  相似文献   

6.
A target moves in Euclideann-spaceR n according to the generalized conditionally deterministic law. The search density that accumulates on the target during its route determines the probability of detection. A necessary and sufficient condition for the search density (x, t) to be optimal is first represented, when there are two types of constraints for the search density: pointwise constraints and total-amount constraints. The second part consists of formulation of the dual problem with the aid of sensitivity parameters for the constraints. By using the dual functional, we obtain the maximal error from the minimum value of the primal objective functional for an arbitrary feasible . Finally, we study the discretized case, which is necessary for numerical calculations.  相似文献   

7.
This article deals with a generalized semi-infinite programming problem (S). Under appropriate assumptions, for such a problem we give necessary and sufficient optimality conditions via reverse convex problems. In particular, a necessary and sufficient optimality condition reduces the problem (S) to a min-max problem constrained with compact convex linked constraints.  相似文献   

8.
For an edge-weighted graph G with n vertices and m edges, we present a new deterministic algorithm for computing a minimum k-way cut for k=3,4. The algorithm runs in O(n k-1 F(n,m))=O(mn k log(n 2 /m)) time and O(n 2) space for k=3,4, where F(n,m) denotes the time bound required to solve the maximum flow problem in G. The bound for k=3 matches the current best deterministic bound ?(mn 3) for weighted graphs, but improves the bound ?(mn 3) to O(n 2 F(n,m))=O(min{mn 8/3,m 3/2 n 2}) for unweighted graphs. The bound ?(mn 4) for k=4 improves the previous best randomized bound ?(n 6) (for m=o(n 2)). The algorithm is then generalized to the problem of finding a minimum 3-way cut in a symmetric submodular system. Received: April 1999 / Accepted: February 2000?Published online August 18, 2000  相似文献   

9.
We consider the problem of minimizing the weighted sum of a smooth function f and a convex function P of n real variables subject to m linear equality constraints. We propose a block-coordinate gradient descent method for solving this problem, with the coordinate block chosen by a Gauss-Southwell-q rule based on sufficient predicted descent. We establish global convergence to first-order stationarity for this method and, under a local error bound assumption, linear rate of convergence. If f is convex with Lipschitz continuous gradient, then the method terminates in O(n 2/ε) iterations with an ε-optimal solution. If P is separable, then the Gauss-Southwell-q rule is implementable in O(n) operations when m=1 and in O(n 2) operations when m>1. In the special case of support vector machines training, for which f is convex quadratic, P is separable, and m=1, this complexity bound is comparable to the best known bound for decomposition methods. If f is convex, then, by gradually reducing the weight on P to zero, the method can be adapted to solve the bilevel problem of minimizing P over the set of minima of f+δ X , where X denotes the closure of the feasible set. This has application in the least 1-norm solution of maximum-likelihood estimation. This research was supported by the National Science Foundation, Grant No. DMS-0511283.  相似文献   

10.
The complexity lower bound Ω (log N ) for randomized computation trees is proved for recognizing an arrangement or a polyhedron with N faces. This provides, in particular, the randomized lower bound Ω (n log n ) for the DISTINCTNESS problem and generalizes [11] where the randomized lower bound Ω (n 2 ) was ascertained for the KNAPSACK problem. The core of the method is an extension of the lower bound from [8] on the multiplicative complexity of a polynomial. Received May 14, 1997, and in revised form October 27, 1997, and February 16, 1998.  相似文献   

11.
This paper presents an extension of an earlier integer programming model developed by other authors to formulate a general n-job, m-machine job-shop problem. The new formulation involves substantially fewer functional constraints at the expense of an increase in the number of upper bound variables. This reduction of functional constraints, together with the imposition of upper and lower bounds on the objective value, significantly reduces the computation time for solving the integer model for the job-shop scheduling problem.  相似文献   

12.
In this paper, we consider two types of inverse sorting problems. The first type is an inverse sorting problem by minimizing the total weighted number of changes with bound constraints. We present an O(n 2) time algorithm to solve the problem. The second type is a partial inverse sorting problem and a variant of the partial inverse sorting problem. We show that both the partial inverse sorting problem and the variant can be solved by a combination of a sorting problem and an inverse sorting problem. Supported by the Hong Kong Universities Grant Council (CERG CITYU 103105) and the National Key Research and Development Program of China (2002CB312004) and the National Natural Science Foundation of China (700221001, 70425004).  相似文献   

13.
A branch and bound algorithm is presented for the problem of schedulingn jobs on a single machine to minimize tardiness. The algorithm uses a dual problem to obtain a good feasible solution and an extremely sharp lower bound on the optimal objective value. To derive the dual problem we regard the single machine as imposing a constraint for each time period. A dual variable is associated with each of these constraints and used to form a Lagrangian problem in which the dualized constraints appear in the objective function. A lower bound is obtained by solving the Lagrangian problem with fixed multiplier values. The major theoretical result of the paper is an algorithm which solves the Lagrangian problem in a number of steps proportional to the product ofn 2 and the average job processing time. The search for multiplier values which maximize the lower bound leads to the formulation and optimization of the dual problem. The bounds obtained are so sharp that very little enumeration or computer time is required to solve even large problems. Computational experience with 20-, 30-, and 50-job problems is presented.  相似文献   

14.
We consider the problem of finding a smallest set of edges whose addition four-connects a triconnected graph. This is a fundamental graph-theoretic problem that has applications in designing reliable networks and improving statistical database security. We present an O(n · α(m, n) + m)-time algorithm for four-connecting an undirected graph G that is triconnected by adding the smallest number of edges, where n and m are the number of vertices and edges in G, respectively, and α(m, n) is the inverse Ackermann function. This is the first polynomial time algorithm to solve this problem exactly.In deriving our algorithm, we present a new lower bound for the number of edges needed to four-connect a triconnected graph. The form of this lower bound is different from the form of the lower bound known for biconnectivity augmentation and triconnectivity augmentation. Our new lower bound applies for arbitrary k and gives a tighter lower bound than the one known earlier for the number of edges needed to k-connect a (k − 1)-connected graph. For k = 4, we show that this lower bound is tight by giving an efficient algorithm to find a set of edges whose size equals the new lower bound and whose addition four-connects the input triconnected graph.  相似文献   

15.
The singularly constrained generalized network problem represents a large class of capacitated linear programming (LP) problems. This class includes any LP problem whose coefficient matrix, ignoring single upper bound constraints, containsm + 1 rows which may be ordered such that each column has at most two non-zero entries in the firstm rows. The paper describes efficient procedures for solving such problems and presents computational results which indicate that, on large problems, these procedures are at least twenty-five times more efficient than the state of the art LP systemapex-iii.This research was partly supported by ONR Contract N00014-76-C-0383 with Decision Analysis and Research Institute and by Project NR047-021, ONR Contracts N00014-75-C-0616 and N00014-75-C-0569 with the Center for Cybernetic Studies, The University of Texas. Reproduction in whole or in part is permitted for any purpose of the United States Government.  相似文献   

16.
This paper presents a polynomial-time dual simplex algorithm for the generalized circulation problem. An efficient implementation of this algorithm is given that has a worst-case running time of O(m 2(m+nlogn)logB), where n is the number of nodes, m is the number of arcs and B is the largest integer used to represent the rational gain factors and integral capacities in the network. This running time is as fast as the running time of any combinatorial algorithm that has been proposed thus far for solving the generalized circulation problem. Received: June 1998 / Accepted: June 27, 2001?Published online September 17, 2001  相似文献   

17.
We propose a column generation based exact decomposition algorithm for the problem of scheduling n jobs with an unrestrictively large common due date on m identical parallel machines to minimize total weighted earliness and tardiness. We first formulate the problem as an integer program, then reformulate it, using Dantzig–Wolfe decomposition, as a set partitioning problem with side constraints. Based on this set partitioning formulation, a branch and bound exact solution algorithm is developed for the problem. In the branch and bound tree, each node is the linear relaxation problem of a set partitioning problem with side constraints. This linear relaxation problem is solved by column generation approach where columns represent partial schedules on single machines and are generated by solving two single machine subproblems. Our computational results show that this decomposition algorithm is capable of solving problems with up to 60 jobs in reasonable cpu time.  相似文献   

18.
We establish the sufficient optimality conditions for a minimax programming problem involving p fractional n-set functions under generalized invexity. Using incomplete Lagrange duality, we formulate a mixed-type dual problem which unifies the Wolfe type dual and Mond-Weir type dual in fractional n-set functions under generalized invexity. Furthermore, we establish three duality theorems: weak, strong, and strict converse duality theorem, and prove that the optimal values of the primal problem and the mixed-type dual problem have no duality gap under extra assumptions in the framework. This research was partly supported by the National Science Council, NSC 94-2115-M-033-003, Taiwan.  相似文献   

19.
We establish an O(nlog2n) upper bound on the time for deterministic distributed broadcasting in multi-hop radio networks with unknown topology. This nearly matches the known lower bound of Ω(nlogn). The fastest previously known algorithm for this problem works in time O(n3/2). Using our broadcasting algorithm, we develop an O(n3/2log2n) algorithm for gossiping in the same network model.  相似文献   

20.
We study asymptotically fast multiplication algorithms for matrix pairs of arbitrary di- mensions, and optimize the exponents of their arithmetic complexity bounds. For a large class of input matrix pairs, we improve the known exponents. We also show some applications of our results:(i) we decrease from O(n~2 n~(1 o)(1)logq)to O(n~(1.9998) n~(1 o(1))logq)the known arithmetic complexity bound for the univariate polynomial factorization of degree n over a finite field with q elements; (ii) we decrease from 2.837 to 2.7945 the known exponent of the work and arithmetic processor bounds for fast deterministic(NC)parallel evaluation of the determinant, the characteristic polynomial, and the inverse of an n×n matrix, as well as for the solution to a nonsingular linear system of n equations; (iii)we decrease from O(m~(1.575)n)to O(m~(1.5356)n)the known bound for computing basic solutions to a linear programming problem with m constraints and n variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号