首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Rate theory has been developed for RA2+RB4 polymerisations including intramolecular reaction and the general behaviour of RA3, RA and stoichiometric RA2+RB3 and RA2+RB4 polymerisations compared regarding the moduli of networks formed at complete reaction. The predictions for RA2+RB3 and RA2+RB4 polymerisations are used to analyse existing experimental data on gel points and moduli in polyurethane polymerisations and networks. By fitting experimental gel points, improved predictions of moduli at complete reaction are achieved.  相似文献   

2.
The conventional free radical polymerization (FRP) of multivinyl monomers (MVMs) inevitably leads to gelation even at low monomer conversion resulting in difficulties to control and monitor the reaction process. Flory and Stockmayer (F-S theory) studied it based on two fundamental assumptions: (1) independent and equivalent vinyl groups; (2) no intramolecular cyclization. However, until now its applicability to FRP of MVMs (especially regarding the extent of intramolecular cyclization) is still controversial. In this paper, Monte Carlo simulations are used to study FRP of divinyl monomers by two kinetic models: with/without cyclization models. The results of the simulations are compared with the calculated gel points based on F-S theory and the experimental data. It is found that the intramolecular cyclization has a negligible impact on the polymerization process and the gel point before gelation, which are in agreement with the prediction by F-S theory, but the effect becomes significant above the gel points.  相似文献   

3.
The molecular structures and macroscopic properties of network polymers depend more closely on reactant structures (molar masses, functionalities, chain flexibilities) and reaction conditions (dilution, proportions of different reactants) than do those of linear polymers. To understand and predict elastomeric properties, it is important to be able to model, statistically, the molecular growth leading to network formation. A new Monte‐Carlo network polymerisation algorithm has been developed, using Flory‐Stockmayer random‐reaction statistics with intramolecular reaction allowed on a correctly weighted basis. The algorithm simulates, as a function of extent of reaction, the formation of all of the connections in a reaction mixture and counts all the ring structures. It also enables polymerisations and network structures to be simulated efficiently up to complete reaction. Comparisons of predictions from the algorithm with experimental data from end‐linking polymerisations show the importance of accounting for the whole distribution of sizes of ring structure in determining reductions in elastic modulus. An important new factor, x, is introduced in the interpretation of experimental data. It is the fractional loss in elasticity per chain in loop structures larger than the smallest.  相似文献   

4.
Recent experimental studies demonstrated that the aqueous methylcellulose (MC) polymer chains in water can form nanoscale fibrils (diameter ~14 nm, persistence length ~60 nm), and those fibrils can organize into networks at higher temperatures and/or concentrations, forming the commonly observed gel. Here we propose that the fibrils are one‐dimensional self‐assemblies of stacked, fused polymer rings that are formed at elevated temperatures due to the changing nature of the MC‐water hydrogen bonding. This mechanism is analogous to the coil‐helix transition in polypeptides, although it is not clear whether the MC fibrils possess chirality. We perform coarse‐grained molecular simulations of MC chain structure at temperatures both above and below the hypothesized coil‐to‐ring transition, with CG forcefield tuned by atomistic molecular dynamics simulations, and observe the expected conformational change. We then develop a statistical mechanical theory to predict the fibril self‐assembly, gelation and rheology as function of temperature and concentration. The findings are in reasonable agreement with experimental data and could be generalized to other carbohydrate polymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1624–1636  相似文献   

5.
Our previous mechanistic discussion of the free‐radical crosslinking monoallyl/diallyl copolymerizations was extended to the cationic crosslinking monoepoxide/diepoxide copolymerizations, typically including 1,2‐epoxycyclohexane (ECH) as a monoepoxide and bis[3,4‐epoxycyclohexylmethyl] adipate (BECHMA) as a diepoxide crosslinker. In the cationic polymerization, oligomer is usually obtained because of the occurrence of characteristic chain‐forming reactions. Therefore, cationic crosslinking monoepoxide/diepoxide copolymerizations could be in the category of the network formation through free‐radical crosslinking monoallyl/diallyl copolymerizations. Thus, the gelation behavior was discussed by comparing the actual gel points with the theoretical ones; the greatly delayed gelation from theory was observed. Then, the resulting network polymer precursors (NPPs) were characterized by SEC‐MALLS‐viscometry to clarify the cationic crosslinking ECH/BECHMA copolymerization mechanism. Notably, the correlation lines of molecular weight versus elution volume were specific for the NPPs obtained at a high conversion close to the gel point as compared with those obtained by the free‐radical crosslinking monoallyl/diallyl copolymerization. This may be ascribed to the occurrence of intramolecular and intermolecular chain transfer reactions characteristic of cationic polymerization; the chain transfer reactions involve the intramolecular and intermolecular nucleophilic attack of ether oxygen or terminal hydroxyl oxygen in the NPPs to a terminal growing cation that leads to the formation of not only the loop‐ but also the crosslink‐structures containing NPPs, providing fragile ultrahigh‐molecular‐weight NPP in the SEC columns. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

6.
The rheological behavior and gelation characteristics of epoxy blends are of critical importance to property study and industrial application. In this work, we studied the rheological behavior and structural transition of different thermoplastics, including polyetherimide, polymethylmethacrylate, and polyethersulfone (PES), modified epoxy systems by using rheometry instrument, differential scanning calorimetry, time-resolved light scattering, and scanning electronic microscopes. At the same molecular weight level of thermoplastics, different epoxy blends show profound diversities on the rheological and gelation behavior due to the large differences in phase separation and curing process. For early phase-separation systems of PES-modified epoxy blends, two gel points are identified, which correspond to physical gelation and chemical gelation, respectively. With the variation of the PES molecular weight and curing rate, dramatic changes in gel time and critical exponent were observed. As the molecular weight of thermoplastics is increased, the gelation time becomes shorter and the gel strength gets lower, while the faster curing rate would increase the physical gel strength significantly.  相似文献   

7.
At the start of our research program concerned with the elucidation of the crosslinking polymerization mechanism leading to interpenetrating polymer network (IPN) formation, in which IPNs consist of both polymethacrylates and polyurethane (PU) networks, this article deals with the polyaddition crosslinking reaction leading to PU network formation. Therefore, 2‐methacryloyloxyethyl isocyanate (MOI) was radically copolymerized with methyl methacrylate (MMA) in the presence of CBr4 as a chain‐transfer agent. The resulting poly(MMA‐co‐MOI)s, having pendant isocyanate (NCO) groups as novel multifunctional polyisocyanates, were used for polyaddition crosslinking reactions with ethylene glycol as a typical diol. The second‐order rate constants depended on both the functionality of poly(MMA‐co‐MOI) and the NCO group concentration. The actual gel points were compared with the theoretical ones calculated according to Macosko's equation; the deviation of the actual gel point from the theoretical value became more remarkable for a greater functionality of poly(MMA‐co‐MOI) and at a lower NCO group concentration or at a lower poly(MMA‐co‐MOI) concentration. These are discussed mechanistically, with consideration given to the significance of intramolecular cyclization and intramolecular crosslinking reactions leading to the shrinkage of the molecular size of the prepolymer, along with the data of the intrinsic viscosities of resulting prepolymers and the swelling ratios of resulting gels. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 606–615, 2003  相似文献   

8.
To understand the fundamental aspects of the polycondensation reaction of hydrolyzed tetraethoxysilane (TEOS) and silanol‐terminated poly(dimethylsiloxane) (PDMS), we modeled the reaction system as a step‐growth polymerization of A4 and polydisperse A2, assuming the reactivities of all functional groups are equal. The analytical solution for the weight‐average molecular weight is developed, and in addition, a Monte Carlo simulation is conducted to investigate the detailed structural development. It was found that as long as the molecular weight of PDMS is much larger than TEOS, the apparent behavior is significantly different from usual gelling systems. The gel point is relatively insensitive to the weight fraction of crosslinker (TEOS), the polydispersity index may decrease during polymerization before the rapid increase to infinity, and the molecular weight distribution profile may not show a significant broadening toward gelation. Even though the present model assumes a complete random reaction process among functional groups, formation of a heterogeneous structure in which a tight core consisting of TEOS‐based molecules is surrounded by soft PDMS chains was observed in the Monte Carlo simulation.  相似文献   

9.
The application of a Monte-Carlo (MC) algorithm to account fully for loop formation in RA2 + R′B3 and RA2 + R′B4 polymerisations is described. The resulting interpretation of experimental elastic moduli of polyurethane networks prepared at different dilutions shows it is essential to account for elastic losses in loop structures of all sizes. An important parameter, x, is introduced, namely the average fractional loss of elasticity per larger loop structure relative to the loss per smallest loop structure. Values of x vary between 0.50 and 0.60, depending on junction point functionality, reactant or network chain stiffness and number of skeletal bonds per smallest loop structure. Application of the MC calculations to the formation and resulting structure of poly(dimethyl siloxane) networks again predicts significant reductions in modulus due to loop structures. However, comparison with experimental modulus data shows that the reductions in modulus due to loops are outweighed by increases due to chain entanglements.  相似文献   

10.
Asymmetric polyethersulfone (PES) micro‐porous flat sheet membranes were prepared by the phase inversion method (PIM) and used as the support. PES‐PDMS composite membranes were fabricated with coating polydimethylsiloxane on the surface of PES membrane. The FluidMAG‐PAD was coated on PES and PES‐PDMS membrane to prepare super‐paramagnetic membranes for separation of oxygen from nitrogen. Permeance and O2/N2 selectivity were evaluated in the absence or presence of external magnetic field. In the absence of external magnetic field, the super‐paramagnetic polymer provides larger surface area leading to extended sites for oxygen adsorption. In the presence of magnetic field, the super‐paramagnetic particles obtained magnetic property leading to a pronounced interaction with oxygen resulting in elevated selectivity and permeability. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Novel copolymers of polyurethane (PU) were prepared by direct transurethanetion reaction of a commercial PU with polydimethylsiloxanes (PDMS, MW 1000, 5000, and 10,000) containing hydroxyl end-groups. Transurethanetions with different mass ratios of hydrophobic PDMS to hydrophilic PU chains (PDMS1000–PU: 43:57, 67:33, 71:29, and 80:20; PDMS5000–PU: 37:63, and 51:49; PDMS10000–PU: 51:49) were carried out in solution at 65 and 100 °C. In catalyzed reactions, dibutyltin dilaurate (SnC32H64O4) was used to promote bond breaking in the PU chain and accelerate the reaction between hydroxyl end-groups of PDMS and regenerated isocyanates of PU. The chemical structures of the prepared copolymers were comprehensively characterized by 1H, 13C, and 29Si NMR spectroscopies. According to elemental analysis, the content of PDMS varied between 3 wt.% and 16 wt.%, and results obtained from the 1H NMR spectroscopy were in good agreement with the results of elemental analysis. Increased length of the hydrophobic chain increased the content of PDMS in the copolymer. The GPC results showed that molar masses of the PUPDMS copolymers were lower than the molar mass of the starting PU. The glass transitions (Tg) of the copolymers were shifted to lower temperature as compared with Tg of the starting polyurethane. ATR FTIR spectroscopy showed the surface of the copolymer films to be enriched with siloxane groups and, according to electron microscopy, it was textured with microspheres. The static contact angles for copolymer films measured with deionized water ranged from 94° to 117°. The different structural, thermal and surface properties of the PUPDMS copolymers as compared with PU indicated that transurethanetion had taken place.  相似文献   

12.
We derived typical phase diagrams for aqueous solutions of methyl cellulose (MC) of different molecular weights via micro‐differential scanning calorimetry, small‐angle X‐ray scattering, and visual inspection. The phase diagrams showed the cooccurrence of gelation and phase separation and qualitatively agreed with the theoretically calculated diagrams. The sol–gel transition line and phase separation line of a lower critical solution point type shifted toward lower temperatures and lower concentrations with an increase in the MC molecular weight. The sol–gel transition line intersected at a temperature higher than the critical point of the phase separation; therefore, both sol–gel phase separation and gel–gel phase separation were possible, depending on the temperature. Specifically, through visual inspection of a high molecular weight MC sample in the critical temperature region, we observed phase separation into two coexisting gels with different polymer concentrations. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 91–100, 2001  相似文献   

13.
As part of our continuing studies concerned with the elucidation of the crosslinking polymerization mechanism leading to interpenetrating polymer network (IPN) formation, in which IPNs consist of both polymethacrylates and polyurethane (PU) networks, this article explores the polyaddition crosslinking reactions of multifunctional poly(methyl methacrylate‐co‐2‐methacryloyloxyethyl isocyanate) [poly(MMA‐co‐MOI)] [MMA/MOI = 90/10] with various diols leading to PU network formation. Thus, the equimolar polyaddition crosslinking reactions of poly(MMA‐co‐MOI) with ethylene glycol (EG), 1,6‐hexane diol, and 1,10‐decane diol (DD) were carried out in N‐methyl pyrrolidone at a 0.25 mol/L isocyanate group concentration at 80 °C. The second‐order rate constants decreased from EG to DD. The deviation of the actual gel point from the theoretical one was smaller from EG to DD. The intrinsic viscosity of resulting prepolymer demonstrated almost no variation with progressing polymerization for the EG system, whereas it gradually increased with conversion for the DD system. Close to the gel point conversion it increased rather drastically for both systems. The swelling ratio of resulting gel was higher from EG to DD. These are discussed mechanistically in terms of the significant occurrence of intramolecular cyclization and intramolecular crosslinking reactions leading to shrinkage of the molecular size. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3243–3248, 2003  相似文献   

14.
Influence of non-gelling methylcellulose(MC)on gelation behavior of wheat gliadins in 13 wt%alkaline propanol/water(50:50, v/v)solution was investigated using dynamic rheological time sweep test.Increasing MC concentration(C_(MC))up to C_(MC)=1wt% caused a significant reduction in gelation time(t_(gel))of the solution and an increase in loss tangent(tanδ)value of the resultant gel at T<30℃.  相似文献   

15.
The effects of a cationic surfactant, cetyltrimethylammonium bromide (CTAB), on the gelation of methylcellulose (MC) in aqueous solutions have been investigated by micro differential scanning calorimetry (micro DSC) and rheology. Methylcellulose had a weight average molecular weight of 310,000 and a degree of substitution of 1.8. The concentration of MC was kept at 0.5 wt % (0.016 mM) and 1 wt % (0.032 mM), and the concentration of CTAB in the MC solutions was varied from 0 to 0.6 wt % (16.5 mM). Upon heating, a single endothermic peak, which is due to the hydrophobic association and gelation of MC, shifts to lower temperatures with increasing CTAB for CTAB < or = CMC (0.93 mM or 0.034 wt %), and then it shifts to higher temperatures lineally with CTAB for CTAB > CMC. At the same time, the endothermic enthalpy decreases with increasing CTAB concentration. Even though CTAB shows a significant "salt-in" effect on the gelation of MC, it does not affect the pattern of the sol-gel transition as well as the gel strength of MC. At the highest concentration of CTAB, 0.60 wt %, MC is still able to form a gel. At a given ratio of CTAB/MC, the effect of CTAB on MC becomes stronger when the MC concentration is lower. The results for the MC-CTAB system are compared with an ionic surfactant, SDS and the significant differences in affecting the gelation of MC between two surfactants are recognized.  相似文献   

16.
The influence of the concentration of poloxamer 407, the pH and the temperature on the gelation of silk fibroin (SF) were studied. It was found that the gelation of SF occurred in the presence of poloxamer at pH value of 7.0 while gelation of SF itself did not occur. The gelation time of SF was shortened with increasing the poloxamer concentration and the temperature. The sol‐gel transition of SF became reversible with an addition of poloxamer. From infrared (IR) and circular‐dichroism (CD) spectroscopy measurements, it was found that a conformational change of the SF in the SF/poloxamer system from random coil to β‐structure was accelerated after forming a polymer complex with the poloxamer. The crystallinity of the poloxamer was reduced by SF from X‐ray diffraction measurements.  相似文献   

17.
This study explores the molecularly templated reaction of pyrene‐terminated telechelic poly(dimethyl siloxane) (PDMS) with graphene oxide (GO) to produce composite elastomers. These materials undergo chemical crosslinking between secondary amides near PDMS chain ends and epoxies on the surface of GO as confirmed by infrared spectroscopy, rheology, gel content, and mechanical property measurements. The incorporation of pyrene end groups introduces π–π interactions with GO surfaces that enhance the reaction efficacy of the nearby secondary amide groups. As a comparison, methoxy‐terminated telechelic PDMS containing the same secondary amides near the chain ends did not exhibit appreciable crosslinking with GO. Depending on the concentration of the amide groups, the pyrene‐terminated PDMS/GO elastomer can be highly crosslinked (e.g., up to 96 wt % gel) but highly extensible (e.g., extensional strains of more than 200%). This general strategy could be implemented using other amide containing polymers to produce a wide range of high‐performance thermosets and elastomers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1406–1413  相似文献   

18.
The immiscibility of poly(dimethylsiloxane) (PDMS) and ionic liquids (ILs) was overcome to create PDMS‐supported IL gels (ionogels) with IL loadings of up to 80 % by mass through a simple sol–gel reaction at room temperature. By stirring a mixture of a functionalized PDMS oligomer, formic acid, and an IL (or lithium‐in‐IL solution), a resin was formed that could be cast to create a freestanding, flexible ionogel. PDMS‐supported ionogels exhibited favorable ionic conductivity (ca. 3 mS cm?1) and excellent mechanical behavior (elastic modulus: ca. 60 kPa; fatigue life: >5000 cycles; mechanically stable at temperatures up to 200 °C). The activation energy of ionic conductivity was shown to be nearly identical for the ionogel and the neat IL, in contrast to ionogel systems wherein the scaffold material is miscible with the IL. This similarity indicates that IL/scaffold chemical interactions are key to the understanding of ionogel electrical performance, especially at elevated temperatures.  相似文献   

19.
α‐Butyl ω‐N, N‐dihydroxyethyl aminopropylpolymethylhydrosiloxane (PDMS), a monotelechelic polydimethylsiloxane with a diol‐end group, which is used to prepare siloxane–urethane dispersion, was successfully synthesized. Then, novel silicone‐based polyurethane (PU)‐dispersion was prepared by the addition polymerization of hexamethylene diisocyanate, to PDMS, polyethylene glycol (PEG) and dimethylol propionic acid. The goal of this study was to explore the potential use of polysiloxane–urethane in marine coatings in order to boost the flexibility, adhesion, erosion and foul‐release property with respect to PDMS/PEG ratio (PDMS wt%). The PDMS was characterized by Fourier‐transform infrared (FT‐IR), proton nuclear magnetic resonance and carbon‐13 nuclear magnetic resonance spectroscopic techniques. The results showed that each step was successfully carried out and the targeted products were synthesized in all cases. The structural elucidation of the synthesized waterborne PU and waterborne polysiloxane–urethane (WBPSU) was carried out by FT‐IR spectroscopic technique. Thermal properties of the resins were studied by using thermogravimetric analysis and differential scanning calorimetry. The antifouling property of the coatings was investigated by the immersion test under a marine environment for 90 days. The fouled area was calculated for all the samples, and the fouled area (%) decreased with increasing PDMS content. After 90 days, the lowest fouled area (6%) was observed in the sample using WBPSU2 (PDMS 4.48 wt%) among all of the samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Methylcellulose is a well-known polymer due to its reverse thermal gel formation property in aqueous solutions. Support materials play an important role in the additive manufacturing of three dimensional parts using processes that utilise inkjet technology. This paper presents novel compositions of methylcellulose (MC) in non-aqueous solvents and investigates the thermal gel formation of these compositions. Compositions containing MC in different glycols (ethylene, propylene and butylene glycol) were prepared. Suitability of these compositions as reusable support materials for jetting based three dimensional printing processes have been previously established. In this paper, the mechanism of gelation of MC in three different glycols is explained and compared using experimental techniques such as heating and cooling between 25–150°C, hot stage microscopy and Fourier Transform Infrared (FTIR) spectroscopy. Based on the results, a generalised gel formation diagram for MC in glycols is presented and compared with aqueous MC gel formation. The results showed that MC forms gels in glycols upon cooling and the temperatures of gel formation/melting are different for each glycol. Understanding of the gel formation of these compositions can help in fine tuning these compositions for their performance during three dimensional printing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号