首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
In order to improve the thermo-oxidative stability of three-dimensional and four-directional braided carbon fiber/epoxy composites, we introduced a gradient interphase reinforced by graphene nanoplatelets (GN) between the carbon fiber and the matrix, with a liquid phase deposition strategy. Both the interlaminar shear strength and the flexural strength of the composites were improved after thermo-oxidative aging at 140 °C for various durations (up to 1200 h). The interfacial reinforcing mechanisms are explored by analyzing the structure of the interfacial phase, thermal conductivity, weight loss, surface topography, fiber/matrix interfacial morphology and thermomechanical properties of the composites. Results indicate that the GN-reinforced gradient interphase provides an effective shield against interface oxidation, assists in thermal stress transfer, and restricts the movement of the different phases of materials at the composite interface.  相似文献   

2.
Summary The role of the boundary interphase on the adhesion efficiency between fiber and matrix in the case of polymers reinforced with unidirectional fibers was investigated. A theoretical model was introduced considering that the composite material consists of three phases; that is, the fiber, the matrix and the interphase, material which is the part of the polymer matrix lying at the close vicinity of the fiber surface. The interphase material, having different physical properties from those of the bulk matrix, affects the overall behavior of the composite. Moreover, the quality of adhesion between the two main phases depends greatly on the nature of the interphase material. In this study we have considered that the interphase material is inhomogeneous in nature, with properties varying continuously from the fiber surface to the bulk matrix. The theory developed resulted in a criterion of the adhesion quality and in a prediction of the longitudinal modulus of elasticity of the fiber-composite.With 4 figures and 1 table  相似文献   

3.
In the second part of this general study, the carbon fiber–PEEK interfacial shear strength is measured by means of a fragmentation test on single-fiber composites. Different thermal treatments (continuous cooling from the melt, isothermal treatments and long melting temperature time) are applied to these model composites prior to testing. The results are systematically compared with the previously determined reversible work of adhesion between carbon fiber and PEEK. It is shown that physical interactions at the interface determine, to a large extent, the magnitude of the interfacial shear strength between both materials. However, it appears that the magnitude of the stress transfer from the matrix to the fiber is affected either by the existence of an interfacial layer or by a preferential orientation of the polymer chains near the fiber surface. The results obtained on systems that have been subjected to isothermal treatments (isothermal crystallization of PEEK) seem to confirm the existence of a transcrystalline interphase, the properties of which are dependent upon the crystallization rate of the matrix and the interfacial adhesion energy.  相似文献   

4.
No reliable method exists for measuring the cellulose fiber–fiber shear bond strength in paper. This paper reports a simple method for measuring the fiber–fiber shear bond strength by weakening the fibers independently of the bonds in a sheet of paper, using acid vapor, until all the fibers break across the fracture line. The bond strength is then calculated from the fiber strength, as measured by the zero span test, at the point where the fibers first are weakened such that they all break. The method was used to calculate the average bond strength of handsheets made out of two different pulps. The first pulp was a never dried, 60% yield, unbleached radiata pine. The bond strength was 25.0 ± 3.3 MPa. Drying the fibers before reslushing and making sheets reduced the bond strength by up to 33%, with the reduction depending on the severity of the drying treatment. The second pulp was a bleached dried softwood kraft and was used to investigate the effect of low consistency refining on bond strength. The bond strength increased from 13.7 ± 1.0 MPa for the sheets made from the unrefined pulp to 37.0 ± 1.0 MPa, for the sheets made from the most heavily refined pulp. The bond strength measurements are considerably higher than previous literature estimates for the shear bond strength. The causes for the discrepancy include stress concentrations in tests of single fiber–fiber bonds.  相似文献   

5.
The aim of this third part is to analyze the structure and properties of the interfacial region between carbon fibers and PEEK as a function of different thermal conditioning treatments. First, it is shown by means of optical microscopy that the interfacial zone is not different from the bulk matrix when standard cooling conditions are used. On the contrary, a transcrystalline interphase is formed near the carbon fiber surface in systems that have been subjected to isothermal treatments. By comparison with previous results concerning the mechanical properties of the fiber–matrix interface, it appears that the interfacial shear strength decreases in the presence of a transcrystalline interphase or when the crystallization rate of PEEK increases. Moreover, it seems that the “constraint state” of the amorphous phase of PEEK near the fiber surface could also play a role in the interfacial shear strength. Secondly, a method is proposed in order to estimate the elastic modulus of crystalline interphases. It seems that this modulus is strongly dependent on the crystallization rate of the polymer. Finally, the determination of the stress-free temperature, defined as the temperature at which a longitudinal compressive stress just appears on the carbon fiber during the processing of the composites, is performed by recording the acoustic events corresponding to the fragmentation process in single-fiber composites. The results confirm that the crystallization rate and the “constraint state” of the amorphous phase of the matrix play an important role in the mechanical behavior of carbon fiber–PEEK interfaces.  相似文献   

6.
Carbon fibers were coated in situ with a thin film of polyhexamethylene adipamide by an interfacial polycondensation technique. The modified fibers were used for the preparation of epoxy-based unidirectional composites. Specimens of these materials were immersed in water until equilibrium conditions were attained. The weight gain at equilibrium was determined as a function of the immersion temperature, the fiber volume fraction and the polyamide content deposited on the fibers. Water penetration in specimens made with uncoated carbon fibers increases when the volume fraction decreases. Introduction of the polyamide interlayer initially increases the water absorption, but reduces it at higher immersion temperatures and/or higher polyamide contents. The treated specimens were subjected to the short beam test to determine the interlaminar shear strength (ILSS). The data show that the ILSS decreases with water penetration but increases when the immersion temperature increases from 40 to 70°C. The overall performance encountered is discussed in terms of the possible roles of the polyamide interphase while taking into account mechanisms concerned with matrix plasticization, interphase degradation and residual stress relaxation.  相似文献   

7.
Interface is an important microstructure for advanced polymer‐matrix composite. The composite interface is the bridge and the link for stress transferring between the fiber and the matrix resin. In this work, oxygen plasma treatment was used for modification of aramid fiber surface. The effects of plasma treatment power on interlaminar shear strength of composite were evaluated by short‐beam shear test. The morphologies of both the aramid fiber surface and its composite interface fracture were observed by SEM. The chemical structure and surface chemical composition of the plasma‐treated and separated fibers were analyzed by Fourier transform infrared (FTIR) and XPS, respectively. The results showed that the interlaminar shear strength of composite was enhanced by 33% with plasma treatment power of 200 W. The FTIR and XPS results indicated that the active functional groups were introduced onto the aramid fiber surface by plasma treatment forming chemical bonds with the poly(phthalazinone ether sulfone ketone) resin. The SEM results proved that the aramid fiber surface was roughened by plasma treatment enhancing the mechanical bond with the poly(phthalazinone ether sulfone ketone) resin. The composite rupture occurred from the composite interface to the fiber or the matrix resin. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
As a coarse-grained model for dense amorphous polymer systems interacting with solid walls (i.e., the fiber surface in a composite), the bond fluctuation model of flexible polymer chains confined between two repulsive surfaces is studied by extensive Monte Carlo simulations. Choosing a potential for the length of an effective bond that favors rather long bonds, the full temperature region from ordinary polymer melts down to the glass transition is accessible. It is shown that in the supercooled state near the glass transition an “interphase” forms near the walls, where the structure of the melt is influenced by the surface. This “interphase” already shows up in static properties, but also has an effect on monomer mobilities and the corresponding relaxation behavior of the polymer matrix. The thickness of the interphase is extracted from monomer density oscillations near the walls and is found to be strongly temperature dependent. It is ultimately larger than the gyration radius of the polymer chains. Effects of shear deformation on this model are simulated by choosing asymmetric jump rates near the moving wall (large jump rate in the direction of motion, and a small rate against it). It is studied how this dynamic perturbation propagates into the bulk of the polymer matrix.  相似文献   

9.
设计并制备了一种新型乙炔基封端聚醚酰亚胺大分子偶联剂(BDA-K),探究了其对石英纤维(QF)/含硅芳炔(PSA)复合材料界面增强增韧的效果.在常温下,加入大分子偶联剂的复合材料层间剪切强度、弯曲强度和缺口冲击强度分别提高了54.1%,59.0%和23.8%;在250℃时,层间剪切强度和弯曲强度保留率分别达到89.0%和89.6%,500℃时保留率分别达到63.3%和67.9%.傅里叶变换红外光谱和X光电子能谱分析结果表明,BDA-K参与PSA的交联固化,与QF发生有效化学键合;热重分析(TGA)结果表明,由于BDA-K的分子结构中引入耐热官能团酰亚胺环等,使其大分子偶联剂的T_(d5)达到489℃;扫描电子显微镜(SEM)结果表明,柔软的大分子层提供了适中的界面结合,使强度和韧性都得到提高.  相似文献   

10.
The flexural properties of isotactic polypropylene (PP) matrix composites reinforced with 5–30 vol% of unidirectional pitch‐based carbon, polyacrylonitrile (PAN)‐based carbon, e‐glass or aramid fibers were measured using both static and dynamic test methods. Previous research has shown that these pitch‐based carbon and aramid fibers are capable of densely nucleating PP crystals at the fiber surface, leading to the growth of an oriented interphase termed a “transcrystalline layer” (TCL), while the e‐glass and PAN‐based carbon fibers show no nucleating ability. The PP matrices examined included unmodified homopolymers, nucleated homopolymers and PP grafted with maleic anhydride (MA). The composites based on the unmodified PP homopolymers all exhibited poor fiber/matrix adhesion, regardless of fiber type and presence or absence of a TCL. The addition of nucleating agent to the PP matrix had no measurable effect on either the amount of TCL material in pitch‐based carbon‐fiber‐reinforced composites, as measured by wide‐angle X‐ray scattering, WAXS, or the static flexural properties of the composites reinforced with either type of carbon fiber. However, MA grafting reduced the transcrystalline fraction of the matrix in pitch‐based carbon‐fiber‐reinforced composites; at the highest level of MA grafting, the TCL was completely suppressed. In addition, high levels of MA grafting improved the transverse flexural modulus of the composites containing both types of carbon fibers, and reduced the extent of fiber pull‐out, indicating an improvement in fiber/matrix adhesion. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
Polyacrylonitrile (PAN)‐based carbon fibers were electrochemically oxidized in aqueous ammonium bicarbonate with increasing current density. The electrochemical treatment led to significant changes of surface physical properties and chemical structures. The oxidized fibers showed much cleaner surfaces and increased levels of oxygen functionalities. However, it was found that there was no correlation between surface roughness and the fiber/resin bond strength, i.e. mechanical interlocking did not play a major role in fiber/resin adhesion. Increases in surface chemical functionality resulted in improved fiber/resin bonding and increased interlaminar shear strength (ILSS) of carbon fiber reinforced epoxy composites. The relationship between fiber surface functionality and the hydrothermal aging behavior of carbon fiber/epoxy composites was investigated. The existence of free volume resulted from poor wetting of carbon fibers by the epoxy matrix and the interfacial chemical structure were the governing factors in the moisture absorption process of carbon fiber/epoxy composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
This paper discloses a feasible and high efficient strategy for wood fiber treatment to introducing multi‐wall carbon nanotubes (MWCNTs) to the surface of wood fibers for the aim of improving the interfacial shear strength of wood fiber/epoxy composite. Briefly, a layer of MWCNT was deposited on wood fibers through sizing wood fibers with epoxy sizing agent containing amine‐treated MWCNTs (MWCNT‐PEI). The surface functional groups, morphology, wettability, and interphase properties of MWCNTs on the surface of wood fiber were studied. The remarkable enhancements were achieved in interfacial shear strength of reinforced composites by dipping wood fiber in MWCNTCOOH suspension and wood fiber sizing containing MWCNT‐PEI.  相似文献   

13.
Water sorption was determined and dynamic-mechanical measurements made on dry and water-containing systems. Different types of surface treatments of the glass fiber were studied. Immobilization of polymer chains in the interphase is determined by the nature of the curing system, annealing conditions, and surface treatment of glass fibers. Penetrating water can be found at three kinds of locations in the composite; water in the interphase has different properties than water in the polymer matrix and in microvoids. This fact can be used as a microscopic probe in epoxy-containing composites. Water content depends on the density of polar groups and the density of the network. At higher temperatures water causes crazes, at lower it mainly acts as a plasticizer. Water in crazes does not affect the glass transition temperature Tg, but it decreases (tan δ) and weakens the material. As long as water mainly goes into swelling, energy transfer between the resin and the matrix is not affected. The reinforcement then works as it should. The results demonstrate the importance of interphase properties on the behavior of the composite.  相似文献   

14.
Interfacial adhesion between the fiber and the matrix in a composite is a primary factor for stress transfer from the matrix to the fiber. In this study, oxygen plasma treatment method was applied to modify the fiber surface for improving interfacial adhesion of aramid fiber‐reinforced poly(phthalazinone ether sulfone ketone) (PPESK) composite. Composite interfacial adhesion properties were determined by interlaminar shear strength (ILSS) using a short‐beam bending test. The composite interfacial adhesion mechanism was discussed by SEM. The changes of chemical composition and wettability for plasma‐treated fiber surfaces stored in air as long as 10 days were investigated by XPS and dynamic contact angle analysis (DCAA), respectively. Results indicated that oxygen plasma treatment was an effective method for improving interfacial adhesion; plasma‐treated fiber surface suffered aging effects during storage in air. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Properties of interface in unidirectional composite materials can be studied “in situ” by dynamic mechanical measurements: analysis of relaxations and appearance of damage in shearing. This methodology is applied on composite materials based on an epoxy matrix and carbon fibers with different surface treatments (untreated, oxidized and sized). Mechanical spectroscopy displays modifications of epoxy network with the fiber treatment and evidence for an interphase in the case of sized fibers. Dynamic shearing test clearly shows large differences of behavior with the surface treatments.  相似文献   

16.
The utility of high-strength, high-modulus polyethylene fibers in fiber-reinforced composites is limited due to its poor interfacial adhesion to various polymeric matrices. One way to overcome this limitation is to introduce reactive functionalities on the fiber surface capable of covalently bonding to matrix resins. Ultra high-strength polyethylene (UHSPE) fibers were treated with chlorosulfonic acid. The surface acid groups were found to considerably improve the interfacial adhesion between polyethylene fibers and epoxy resins as shown by the microbond test. These surface functionalities were found to improve the fiber wettability, as shown by contact angle measurements using the Wilhelmy balance method. Colorimetric measurements of methylene blue absorption were used to quantify the surface concentrations of the acid groups. It was possible to functionalize the UHSPE fiber surfaces using this method to obtain fibers that formed a stronger adhesive bond with epoxy resins; this was achievable without sacrificing other fiber mechanical properties.  相似文献   

17.
选用形状记忆聚氨酯(SMPU)和正硅酸乙酯(TEOS)为前驱体,固体酸对甲基苯磺酸(PTSA)为催化剂,利用空气中的水分为水解水源,通过溶胶-凝胶法原位制备了形状记忆聚氨酯与二氧化硅( SMPU-SiO2)杂化材料,并将杂化材料应用于芳纶纤维增强的柔性复合材料中,以期改善芳纶纤维与基体的界面性能.同时,针对芳纶纤维表面...  相似文献   

18.
The mechanical performances of fiberglass reinforced plastics (FRP) are quite different when the glass fibers are treated with vinyl (VS) and methacryl (γ-MPS) functional silane coupling agents. We have studied the structural basis for this difference on the molecular level using Fourier transform infrared spectroscopy (FT-IR). A high-surface-area silica powder is used to study the coupling agent/matrix interface. Both VS and γ-MPS can react with styrene at the interface. However, when E-glass fiber is used as a substrate, only γ-MPS polymerizes in the coupling agent interphase which consists of many layers of coupling agent molecules while the major portion of the VS does not polymerize in the interphase. The effect of glass surfaces, with and without a coupling agent, on the curing of the polyester resin has also been studied. Silane coupling agents participate in the curing of the polyester resin while untreated E-glass fiber surfaces inhibit the polymerization resulting in different structures from the bulk matrix.  相似文献   

19.
In the present paper, starch-based biocomposites have been prepared by reinforcing corn starch matrix with mercerized Abelmoschus esculentus lignocellulosic fibers. The effect of fiber content on mechanical properties of composite was investigated and found that tensile strength, compressive strength, and flexural strength at optimum fiber content were 69.1%, 93.7% and 105.1% increased to that of cross-linked corn starch matrix, respectively. The corn starch matrix and its composites were characterized by Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermogravimetric (TGA) analysis. The fiber reinforced composites were found to be highly thermal stable as compared to natural corn starch and cross-linked corn starch matrix. Further, water uptake and biodegradation studies of matrix and composites have also been studied.  相似文献   

20.
Biobased epoxy was synthesized from diglycidyl ether of bisphenol A (DGEBA) and epoxidized castor oil (ECO) at a ratio of 80:20. Carbon fiber (CF) was used as a reinforcing agent to fabricate composites using biobased epoxy as matrix. Mechanical, Thermal and morphological properties of neat epoxy and biobased epoxy composites were investigated. Mechanical test results revealed that the composites prepared using five plies were higher than those with three plies and one ply respectively. This phenomenon revealed the effective reinforcing effect of carbon fiber due to its higher strength and higher crosslinking density. The composites also demonstrate high damping behavior as compared with neat epoxy and biobased epoxy blend. With increasing number of plies the composites thermal properties also shows an improvement. The SEM micrographs of the composites depicted that the biobased epoxy was fully adhered to the carbon fiber, thus representing a strong interface between CF/epoxy matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号