首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infrared vibrational spectroscopy was used to probe concentration-dependent ion pair dissociation of imidazolium-based ionic liquids with three different halide anions (I, Br, and Cl) in deuterated chloroform. Dissociation of the ion pairs at low concentrations of ionic liquids was found to be the easiest for ionic liquid with Cl anion, the most electronegative anion among the three investigated. This anomalous trend of ion pair dissociation was explained in terms of varying interaction strength between the solvent (CDCl3) and the anions investigated.  相似文献   

2.
Here we show that cyclic trimetric perfluoro-o-phenylenemercury (o-C6F4Hg)3 is capable of forming complexes with [PPh4]+Br, [PPh3Me]+I and [PPh4]+Cl of the composition [(o-C6F4Hg)3X] [PR3R′]+ (X = Br, R = R′ = Ph; X = I, R = Ph, R′ = Me) or {[(o-C6F4Hg)3X2}2−[PR3R′]+2 (X = Cl, R = R′ = Ph). An X-ray study of the complex with [PPh4]+Br revealed that it has the unusual structure of the polydecker bent sandwich wherein each Br anion is coordinated with six mercury atoms of two neighbouring molecules of (o-C6F4Hg)3.  相似文献   

3.
A simple self‐assembled [Pd2 L 4] coordination cage consisting of four carbazole‐based ligands was found to dimerize into the interpenetrated double cage [3 X@Pd4 L 8] upon the addition of 1.5 equivalents of halide anions (X=Cl?, Br?). The halide anions serve as templates, as they are sandwiched by four PdII cations and occupy the three pockets of the entangled cage structure. The subsequent addition of larger amounts of the same halide triggers another structural conversion, now yielding a triply catenated link structure in which each PdII node is trans‐coordinated by two pyridine donors and two halide ligands. This simple system demonstrates how molecular complexity can increase upon a gradual change of the relative concentrations of reaction partners that are able to serve different structural roles.  相似文献   

4.
Several new transition metal complexes derived from 4,5-dimethyl-3-carboxaldehyde phenyl- thiosemicarbazone, LH, have been synthesized. The complexes are of stoichiometry, [CoL2]X, X = Cl, Br, ClO4 or NO3, [MnL2] and [CuXnLm], X = Cl, Br, NCS or N3; n = 1 or 0; m = 1 or 2 and L = the anion of LH. All complexes have been characterized by elemental analysis, spectral (i.r., electronic, NMR, ESR) and magnetic measurements. The ligand acts as tridentate monobasic co-ordinated to the metal ion via azomethine, pyrazole (N2) nitrogen atoms and the thiolo-sulphur. The ligand field and ESR parameters are used to interpret the nature of bonding of LH with the metal ion, ground state and the ligand field strength of LH and the various co-ordinated simple ions. The coupling constants of various co-ordinated nuclei with copper (II) are estimated from ESR spectra of copper (II) complexes.  相似文献   

5.
A series of five ternary octanuclear iodine-bromine-chlorine interhalides, [I2Br2Cl4]2− ( 1 ), [I3BrCl4]2− ( 2 ), [I4Br2Cl2]2− ( 3 ), [I2Br4Cl2]2− ( 4 ) and [I3Br3Cl2]2− ( 5 ), have been rationally constructed in two steps. Firstly, addition of a dihalogen (ICl or IBr) to the triaminocyclopropenium chloride salt [C3(NEt2)3]Cl forms the corresponding trihalide salt with [ICl2] or [BrICl] anions, respectively. Secondly, addition of a half-equivalent of a second dihalogen, followed by crystallization at low temperature, gives the corresponding octahalide: addition of Br2 and IBr to [ICl2] gives 1 and 2 , respectively, whereas addition of I2, Br2 and IBr to [BrICl] gives 3 , 4 and 5 , respectively. The five octahalides were characterized by X-ray crystallography and far–IR spectroscopy.  相似文献   

6.
The title compound, (C4H12N)4[Ta6Cl18]Cl, crystallizes in the cubic space group . The crystal structure contains two different types of coordination polyhedra, i.e. four tetrahedral [(CH3)4N]+ cations and one octahedral [(Ta6Cl12)Cl6]3− cluster anion, and one Cl ion. The presence of three different kinds of Cl atoms [bridging (μ2), terminal and counter‐anion] in one mol­ecule makes this substance unique in the chemistry of hexanuclear halide clusters of niobium and tantalum. The Ta6 octahedron has an ideal Oh symmetry, with a Ta—Ta interatomic distance of 2.9215 (7) Å.  相似文献   

7.
The selective molecular recognition of chloride versus similar anions is a continuous challenge in supramolecular chemistry. We have designed and prepared a simple pseudopeptidic cage ( 1 a ) that defines a cavity suitable for the tight encapsulation of chloride. The interaction of the protonated form of 1 a with different inorganic anions was studied in solution by 1H NMR spectroscopy and ESI‐MS, and in the solid state by X‐ray diffraction. The solution binding data showed that the association constants of 1 a to chloride are more than two orders of magnitude higher than to any other tested inorganic anion. Remarkably, 1 a displayed a high selectivity for chloride over other closely related halides such as bromide (selectivity=111), iodide (selectivity=719), and fluoride (selectivity >1000). Binding experiments (1H NMR spectroscopy and ESI‐MS) suggested that 1 a has a high‐affinity (inner) binding site and an additional low‐affinity (external) binding site. The supramolecular complexes with F?, Cl?, and Br? have been also characterized by the X‐ray diffraction of the corresponding [ 1 a? nHX] crystalline salts. The structural data show that the chloride anion is tightly encapsulated within the host, in a binding site defined by a very symmetric array of electrostatic H‐bonds. For the fluoride salt, the size of the cage cavity is too large and is occupied by a water molecule, which fits inside the cage efficiently competing with F?. In the case of the bigger bromide, the mismatch of the anion inside the cage caused a geometrical distortion of the host and thus a large energetic penalty for the interaction. This minimalistic pseudopeptidic host represents a unique example of the construction of a simple well‐defined binding pocket that allows the highly selective molecular recognition of a challenging substrate.  相似文献   

8.
Aggregation-induced emission (AIE) materials have drawn great attention for applications as organic light-emitting diodes (OLED) and probes. The applications are, however, restricted by the complex syntheses and hydrophobic properties. Herein, a one-step synthesis of an AIE material based on imidazole hydrazone is assessed. Protonation of the imidazole-H leads to emission color change from yellow to green in the solid state. The emission color is recovered upon imidazole-H+ deprotonation. Moreover, the emission wavelength shifts from 532 to 572 nm by anion exchange. In addition, an enhanced emission (ΦF up to 22.6 %) was obtained with the Br anion compared with NTf2, SbCl5, PF6, and OTf anions. X-ray crystallography studies together with theoretical calculations show that the enhanced emission of hydrazone salts arises from strong hydrogen bonding between the hydrazone proton and the halide ion (Cl or Br).  相似文献   

9.
The reactivity of the lithium halides in 83.3% pyridine-dimethylformamide changes from Cl? > Br? > I? to Br? > I? to Br? > I? > Cl? with increasing concentration of the salt from 0 to 0.35 M. This behaviour is explained by ion pairing which reduces the concentration of reactive free nucleophiles. Equilibrium constants K for ion pair dissociation and rate constants k2 for the reaction of the free nucleophiles were determined from the variation of the observed rate constant with the total halide concentration and from conductivity measurements.  相似文献   

10.
The analytical potential of negative ion chemical ionization (NICI) mass spectrometry utilizing dibromodifluoro-methane (CF2Br2) and iodomethane (CH3I)/methane (CH4) as reagent gases is examined. The NICI mass spectrum of CF2Br2 contains Br?, [HBr2]? and [CF2Br3]? anions. Weak acids (i.e. those acids with approximately ΔH°(acid) values between 1674 and 1464 kJ mol?1) react with Br? to produce minor yields of the hydrogen?bonded bromide attachment [MH + Br]? anion or are unreactive. Strong acids (i.e. those acids with approximately ΔH°(acid) > 1464 kJ mol?1) produce primarily [MH + Br]? anions with a minor yield of proton transfer [M ? H]? anion. The NICI spectrum of CH3I/CH4 is dominated by I?. Weak acids react with I? to yield minor amounts of [MH + 1]? or are unreactive. Strong acids produce only [MH + l]? anions. From a consideration of the gas-phase basicity of the halide anion and the binding energy of the hydrogen-bonded halide attachment adduct, thermochemical data are used as a potential guide to rationalize or predict the ions observed in NICI mass spectra.  相似文献   

11.
Summary A series of cobalt(II), nickel(II) and copper(II) complexes of 2-picolinamineN-oxide, HA, has been prepared. Solids of formula [M(HA)3](BF4)2 (M=cobalt(II) or nickel(II); [Cu(HA)2]X2 (X=BF 4 , NO 3 ); [Co(HA)2X2] (X=Cl or Br); [Ni(HA)2Cl2] and [Cu(HA)X2] (X=Cl or Br] have been isolated and characterized by partial elemental analyses, molar conductivities, magnetic susceptibilities, DSC-TGA, and spectral methods. All complexes were found to be monomeric, and their spectral parameters are compared with those of the metal ion complexes ofN-alkyl-2-picolinamineN-oxides, 2-dialkylaminopyridineN-oxides and 2-picolinamine. The cobalt(II) and nickel(II) halide complexes spectrally show a mixture of octahedral and tetrahedral centres.  相似文献   

12.
Quenching of Ru(bpy)32+ electrochemiluminescence (ECL) by Cl?, Br?, and I? ions was studied as a function of halide concentration in a bipolar electrochemical cell. All of the halides investigated showed similar qualitative behavior: above a critical concentration, ECL intensity was found to decrease linearly as the halide ion concentration was increased, due to dynamic quenching of Ru(bpy)32+ ECL. Stern‐Volmer slopes (KSV) of 0.111±0.003, 4.2±0.3, and 6.2±0.3 mM?1 were measured for Cl?, Br? and I?, respectively. The magnitude of KSV correlates with halide ion oxidation potential, consistent with an electron transfer quenching mechanism. Using the bipolar platform described herein, aqueous, halide‐containing solutions could be quantified rapidly using the sequential standard addition method. The lower detection limit is determined by a complex mechanism involving the competitive electrooxidation of halide ions and the ECL co‐reactants, as well as the passivation of the surface of the bipolar electrode, and was found to be 0.20±0.01, 0.08±0.01 and 10±1 mM, respectively, for I?, Br?, and Cl?. The performance of the bipolar ECL quenching assay is comparable to previously published fluorescence quenching methods for the determination of halide ions, while being much simpler and less expensive to implement.  相似文献   

13.
This paper overviews three living cationic polymerization systems (for styrene, p-methoxystyrene, and isobutyl vinyl ether) that are, in common, featured by: (i) specifically in nonpolar solvents, the use of the hydrogen halide/metal halide initiating systems (HX/MXn; X: I, Br, Cl; MXn: ZnX2, SnCl4), which generate a living growing carbocation stabilized by a nucleophilic counteranion (X…MXn); (ii) specifically in polar solvents, the use of externally added ammonium salts (nBu4N+Y; Y: I, Br, Cl), which permit the generation of living species from HX/MXn by providing nucleophilic halogen anions Y, either the same as or different from the halogen X in HX.  相似文献   

14.
Three macrobicyclic octamines 1–3 and the macrotricyclic hexadecamine 14 have been synthesized. The octamines 1–3 bind anionic substrates when protonated. The stability constants of the complexes between the protonated forms of the macrobicyclic polyamines and halide anions have been determined by pH-metric measurements. The stability constants in H2O are very high; 1 in its hexaprotonated form binds F with high selectivity (selectivity F/Cl > 108), while 3 exhibits strong stability constants for both F and Cl. Three X-ray structures have been obtained, one where F is held inside the cavity of 1 · 6H+, one where Cl is included in 3 · 6H+, and 3 · 6H+ where the cavity is empty.  相似文献   

15.
The title compound, [Cu4Cl6O(C12H14N2)4], is a new example of the well known [Cu44‐O)(μ‐X)6L4] class of complex (X is Cl, Br or I, and L is a monodentate ligand). The molecule has crystallographic C2 symmetry, with two Cl ions on each edge of a Cu4 tetrahedron. Two of these, on opposite edges of the tetrahedron, accept intramolecular hydrogen bonds from two of the pyrazole N—H donors.  相似文献   

16.
Preparation and Vibrational Spectra of Nonahalogenodirhodates(III), [Rh2ClnBr9-n]3?, n = 0–9 The pure nonahalogenodirhodates(III), A3[Rh2ClnBr9-n], A = K, Cs, (TBA); n = 0–4, 9, have been prepared. They are formed from the monomer chlorobromorhodates(III), [RhClnBr6-n]3?, n = 0–6, which are bridged to confacial bioctahedral complexes by ligand abstraction in less polar organic solvents. From the mixtures the complexions are separated by ion exchange chromatography on DEAE-cellulose. The solid, air-stable, air-stable, K-, Cs- and (TBA)-salts of [Rh2ClnBr9-n]3?, n = 0–4, are green, of [Rh2Cl9]3? are brown. The IR and Raman spectra of [Rh2Br9]3? and [Rh2Cl9]3? are assigned according to the point group D3h. The chlorobromodirhodates exist as mixtures of geometrical and structural isomers, which belong to different point groups. The vibrational spectra exhibit bands in characteristic regions; at high wavenumbers stretching vibrations with terminal ligands v(Rh—Clt): 360–320, v(Rh—Brt): 280–250; in a middle region with bridging ligands v(Rh—Clb): 300–270, v(Rh—Brb): 210–170 cm?1; the deformation bands are observed at distinct lower frequencies. The terminal ligands are fixed very strong, and the distance between v(Rh—Xt) and v(Rh—Xb) increases with decreasing size of the cations.  相似文献   

17.
Herein, we report the synthesis and characterization of a variety of novel poly(hydrogen halide) halogenates (−I). The bifluoride ion, which is known to have the highest hydrogen bond energy of ≈160 kJ mol−1, is the most famous among many examples of [X(HX)n] anions (X=F, Cl) known in the literature. In contrast, little is known about poly(hydrogen halide) halogenates containing two different halogens, ([X(HY)n]). In this work we present the synthesis of anions of the type [X(HY)n] (X=Br, I, ClO4; Y=Cl, Br, CN) stabilized by the [PPh4]+ and [PPN]+ cation. The obtained compounds have been characterized by single-crystal X-ray diffraction, Raman spectroscopy and quantum-chemical calculations. In addition, the behavior of halide ions in hydrogen fluoride was investigated by using experimental and quantum-chemical methods in order to gain knowledge on the acidity of hydrogen halides in HF.  相似文献   

18.
Caged supramolecular systems are promising hosts for guest inclusion, separation, and stabilization. Well‐studied examples are mainly metal‐coordination‐based or covalent architectures. An anion‐coordination‐based cage that is capable of encapsulating halocarbon guests is reported for the first time. This A4L4‐type (A=anion) tetrahedral cage, [(PO4)4 L 4]12?, assembled from a C3‐symmetric tris(bisurea) ligand ( L ) and phosphate ion (PO43?), readily accommodates a series of quasi‐tetrahedral halocarbons, such as the Freon components CFCl3, CF2Cl2, CHFCl2, and C(CH3)F3, and chlorocarbons CH2Cl2, CHCl3, CCl4, C(CH3)Cl3, C(CH3)2Cl2, and C(CH3)3Cl. The guest encapsulation in the solid state is confirmed by crystal structures, while the host–guest interactions in solution were demonstrated by NMR techniques.  相似文献   

19.
A series of octanuclear iodine-bromine interhalides [InBr8−n]2− (n=0, 2, 3, 4) were prepared systematically in two steps. Firstly, addition of a dihalogen (Br2 or IBr) to the triaminocyclopropenium bromide salt [C3(NEt2)3]Br forms the corresponding trihalide salt with Br3 or IBr2 anions, respectively. Secondly, addition to Br3 of half an equivalent of Br2 gives the octabromine polyhalide [Br8]2−, whereas addition to IBr2 of half an equivalent of Br2, IBr or I2 gives the corresponding interhalides: [I2Br6]2−, [I3Br5]2−, and [I4Br4]2−, respectively. The four octahalides were characterized by X-ray crystallography, computational studies, Raman and Far-IR spectroscopies, as well as by TGA and melting point. All of the salts were found to be ionic liquids.  相似文献   

20.
The interaction of molecules, especially hydrocarbons, at the gas/ionic liquid (IL) surface plays a crucial role in supported IL catalysis. The dynamics of this process is investigated by measuring the trapping probabilities of n-butane, iso-butane and 1-butene on a set of frozen 1-alkyl-3-methylimidazolium-based ILs [CnC1Im]X, where n=4, 8 and X=Cl, Br, [PF6] and [Tf2N]. The decrease of the initial trapping probability with increasing surface temperature is used to determine the desorption energy of the hydrocarbons at the IL surfaces. It increases with increasing alkyl chain length n and decreasing anion size for the ILs studied. We attribute these effects to different degrees of alkyl chain surface enrichment, while interactions between the adsorbate and the anion do not play a significant role. The adsorption energy also depends on the adsorbing molecule: It decreases in the order n-butane>1-butene>iso-butane, which can be explained by different dispersion interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号