首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Pincer complexes can act as catalysts in organic transformations and have potential applications in materials, medicine and biology. They exhibit robust structures and high thermal stability attributed to the tridentate coordination of the pincer ligands and the strong σ metal–carbon bond. Nickel derivatives of these ligands have shown high catalytic activities in cross‐coupling reactions and other industrially relevant transformations. This work reports the crystal structures of two polymorphs of the title NiII POCOP pincer complex, [Ni(C29H41N2O8P2)Cl] or [NiCl{C6H2‐4‐[OCOC6H4‐3,5‐(NO2)2]‐2,6‐(OPtBu2)2}]. Both pincer structures exhibit the NiII atom in a distorted square‐planar coordination geometry with the POCOP pincer ligand coordinated in a typical tridentate manner via the two P atoms and one arene C atom via a C—Ni σ bond, giving rise to two five‐membered chelate rings. The coordination sphere of the NiII centre is completed by a chloride ligand. The asymmetric units of both polymorphs consist of one molecule of the pincer complex. In the first polymorph, the arene rings are nearly coplanar, with a dihedral angle between the mean planes of 27.9 (1)°, while in the second polymorph, this angle is 82.64 (1)°, which shows that the arene rings are almost perpendicular to one another. The supramolecular structure is directed by the presence of weak C—H…O=X (X = C or N) interactions, forming two‐ and three‐dimensional chain arrangements.  相似文献   

2.
A series of Ru complexes containing lutidine‐derived pincer CNC ligands have been prepared by transmetalation with the corresponding silver‐carbene derivatives. Characterization of these derivatives shows both mer and fac coordination of the CNC ligands depending on the wingtips of the N‐heterocyclic carbene fragments. In the presence of tBuOK, the Ru‐CNC complexes are active in the hydrogenation of a series of imines. In addition, these complexes catalyze the reversible hydrogenation of phenantridine. Detailed NMR spectroscopic studies have shown the capability of the CNC ligand to be deprotonated and get involved in ligand‐assisted activation of dihydrogen. More interestingly, upon deprotonation, the Ru‐CNC complex 5 e (BF4) is able to add aldimines to the metal–ligand framework to yield an amido complex. Finally, investigation of the mechanism of the hydrogenation of imines has been carried out by means of DFT calculations. The calculated mechanism involves outer‐sphere stepwise hydrogen transfer to the C?N bond assisted either by the pincer ligand or a second coordinated H2 molecule.  相似文献   

3.
N‐Heterocyclic carbene based pincer ligands bearing a central silyl donor, [CSiC], have been envisioned as a class of strongly σ‐donating ligands that can be used for synthesizing electron‐rich transition‐metal complexes for the activation of inert bonds. However, this type of pincer ligand and complexes thereof have remained elusive owing to their challenging synthesis. We herein describe the first synthesis of a CSiC pincer ligand scaffold through the coupling of a silyl–NHC chelate with a benzyl–NHC chelate induced by one‐electron oxidation in the coordination sphere of a cobalt complex. The monoanionic CSiC ligand stabilizes the CoI dinitrogen complex [(CSiC)Co(N2)] with an unusual coordination geometry and enables the challenging oxidative addition of E−H bonds (E=C, N, O) to CoI to form CoIII complexes. The structure and reactivity of the cobalt(I) complex are ascribed to the unique electronic properties of the CSiC pincer ligand, which provides a strong trans effect and pronounced σ‐donation.  相似文献   

4.
N‐Heterocyclic carbene based pincer ligands bearing a central silyl donor, [CSiC], have been envisioned as a class of strongly σ‐donating ligands that can be used for synthesizing electron‐rich transition‐metal complexes for the activation of inert bonds. However, this type of pincer ligand and complexes thereof have remained elusive owing to their challenging synthesis. We herein describe the first synthesis of a CSiC pincer ligand scaffold through the coupling of a silyl–NHC chelate with a benzyl–NHC chelate induced by one‐electron oxidation in the coordination sphere of a cobalt complex. The monoanionic CSiC ligand stabilizes the CoI dinitrogen complex [(CSiC)Co(N2)] with an unusual coordination geometry and enables the challenging oxidative addition of E−H bonds (E=C, N, O) to CoI to form CoIII complexes. The structure and reactivity of the cobalt(I) complex are ascribed to the unique electronic properties of the CSiC pincer ligand, which provides a strong trans effect and pronounced σ‐donation.  相似文献   

5.
Vanadium forms binuclear complexes with a variety of ligands often containing V≡V triple bonds. Many tetragonal divanadium paddlewheel complexes with bridging bidentate ligands have been experimentally characterized. This research exhaustively treats model tetragonal, trigonal, and digonal paddlewheel-type divanadium complexes V2Lx (L=formamidinate, guanidinate, and carboxylate; x=2, 3, 4), each in the three lowest-energy spin states. The V−V formal bond orders are obtained from metal−metal MO diagrams for representative structures. A number of short V−V multiple bonds of order 3, 3.5, and 4 are found in these model complexes. The short V≡V triple bonds and singlet ground state predicted here for the model tetragonal complexes correspond well with the limited experimental results for the series of known tetragonal paddlewheels. Digonal divanadium lanterns with very short V−V quadruple bonds are predicted as interesting synthetic targets. The V−V bond distances are categorized into distinct ranges according to the formal bond order values from 0.5 to 4. These bond length ranges are compared with the ranges compiled for other divanadium complexes including carbonyl complexes.  相似文献   

6.
The orthorhombic crystal structure of [Co2(CO)6(μ‐CO)(μ‐C4O2H2)] ( 1 ) was determined at 150 K (Fig. 1). Two C−H⋅⋅⋅O bonds connect the molecules, forming waving ribbons along the b axis. The experimental electron density, determined with the aspherical‐atom formalism, was analyzed with the topological theory of molecular structure. The presence of the Co−Co bond critical point indicates for the first time the existence of a metal−metal bond in a system with bridged ligands. The bond critical properties of the intramolecular bonds and of the intermolecular interactions show features similar to those found in [Mn2(CO)10], confirming our previously established bonding classification for organometallic and coordination compounds.  相似文献   

7.
In the title compound, [Cu(C7H3N2O4)(C4H5N2)(H2O)], (I), pyridine‐2,6‐dicarboxylate (pydc2−), 2‐aminopyrimidine and aqua ligands coordinate the CuII centre through two N atoms, two carboxylate O atoms and one water O atom, respectively, to give a nominally distorted square‐pyramidal coordination geometry, a common arrangement for copper complexes containing the pydc2− ligand. Because of the presence of Cu...Xbridged contacts (X = N or O) between adjacent molecules in the crystal structures of (I) and three analogous previously reported compounds, and the corresponding uncertainty about the effective coordination number of the CuII centre, density functional theory (DFT) calculations were used to elucidate the degree of covalency in these contacts. The calculated Wiberg and Mayer bond‐order indices reveal that the Cu...O contact can be considered as a coordination bond, whereas the amine group forming a Cu...N contact is not an effective participant in the coordination environment.  相似文献   

8.
We report the first examples of metal-promoted double geminal activation of C(sp3)−H bonds of the N−CH2−N moiety in an imidazole-type heterocycle, leading to nickel and palladium N-heterocyclic carbene complexes under mild conditions. Reaction of the new electron-rich diphosphine 1,3-bis((di-tert-butylphosphaneyl)methyl)-2,3-dihydro-1H-benzo[d]imidazole ( 1 ) with [PdCl2(cod)] occurred in a stepwise fashion, first by single C−H bond activation yielding the alkyl pincer complex [PdCl(PC HP)] ( 3 ) with two trans phosphane donors and a covalent Pd−C bond. Activation of the C−H bond of the resulting α-methine C H−M group occurred subsequently when 3 was treated with HCl to yield the NHC pincer complex [PdCl(PCNHCP)]Cl ( 2 ). Treatment of 1 with [NiBr2(dme)] also afforded a NHC pincer complex, [NiBr(PCNHCP)]Br ( 6 ), but the reactions leading to the double geminal C−H bond activation of the N−CH2−N group were too fast to allow identification or isolation of an intermediate analogous to 3 . The determination of six crystal structures, the isolation of reaction intermediates and DFT calculations provided the basis for suggesting the mechanism of the stepwise transformation of a N−CH2−N moiety in the N−CNHC−N unit of NHC pincer complexes and explain the key differences observed between the Pd and Ni chemistries.  相似文献   

9.
A systematic quantum chemical study of the bonding in d6-transition-metal complexes, containing phosphine-stabilized, main-group-element fragments, (R3P)2E, as ligands (E=AlH, BH, CH+, C), is reported. By using energy decomposition analysis, it is demonstrated that a strong M−E bond is accompanied by weak P−E bonds, and vice versa. Although the Al−M bond is, for example, found to be very strong, the weak Al−P bond suggests that the corresponding metal complexes will not be stable towards phosphine dissociation. The interaction energies for the boron(I)-based ligand are lower, but still higher than those for two-carbon-based ligands. For neutral ligands, electrostatic interactions are the dominating contributions to metal–ligand bonding, whereas for the cationic ligand a significant destabilization, with weak orbital and even weaker electrostatic metal–ligand interactions, is observed. Finally, for iron(II) complexes, it is demonstrated that different reactivity patterns are expected for the four donor groups: the experimentally observed reversible E−H reductive elimination of the borylene-based ligand (E=BH) exhibits significantly higher barriers for the protonated carbodiphosphorane (CDP) ligand (E=CH) and would proceed through different intermediates and transition states. For aluminum, such reaction pathways are not feasible (E=AlH). Moreover, it is demonstrated that the metal hydrido complexes with CDP ligands might not be stable towards reduction and isomerization to a protonated CDP ligand and a reduced metal center.  相似文献   

10.
A series of tin(II) complexes supported by N2O2 bis(phenol)‐amine ligands were prepared from the reactions of the corresponding ligands with Sn[N(SiMe3)2]2 in benzene at room temperature. The ligands were designed to have different substituted group at the ortho‐position on the aryl rings (R = tBu, CH3) and N‐containing side arm (E = ? CH2NEt2 and pyridine) giving a variation of tin(II) complexes (R = tBu, E = CH2NEt2, 2a ; R = tBu, E = py, 2b ; R = CH3, E = CH2NEt2, 2c ; R = CH3, E = py, 2d ). All complexes were characterized by NMR spectroscopy and single‐crystal X‐ray analysis. The single‐crystal X‐ray crystallography revealed that all complexes have a monomeric four‐coordinate tin center with a distorted seesaw structure. All complexes are active for solvent‐free polymerization of l ‐lactide at 120 °C giving poly(l ‐lactide) with narrow to moderate dispersity (Ð = 1.12–1.56). In the presence of benzyl alcohol during the polymerization, the resulting polymer was found to be linear having benzyl alcohol as the end group while, in the absence of benzyl alcohol, the polymer was cyclic. The large tBu group at the ortho‐position was found to decrease polymerization activity while the more basic ? CH2NEt2 group was found to increase the polymerization activity. The polymerization of rac‐lactide under a similar condition gave PLA having a slight heterotactic bias for all catalysts. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2104–2112  相似文献   

11.
Rhodium PCcarbeneP complexes 1‐L {L=PPh3, PPh2(C6F5)} react with isothiocyanate, carbodiimide and disulphide to enable C?S, C?N and S?S bond cleavage. The cleaved molecules are sequestered by the metal center and the pincer alkylidene linkage, forming η2‐coordinated sulfide or imide centered pincer complexes. When a C?S or S?S bond is cleaved, the resulting complexes can bridge two rhodium centers through sulphur forming dimeric complexes and eliminating a monodentate phosphine ligand.  相似文献   

12.
Density Functional Theory (UB3LYP/6‐311++G(d,p)) calculations of the affinity of the pentaaqua nickel(II) complex for a set of phosphoryl [O?P(H)(CH3)(PhR)], imino [HN?C(CH3)(PhR)], thiocarbonyl [S?C(CH3)(PhR)] and carbonyl [O?C(CH3)(PhR)] ligands were performed, where R?NH2, OCH3, OH, CH3, H, Cl, CN, and NO2 is a substituent at the para‐position of a phenyl ring.The affinity of the pentaaqua nickel(II) complex for these ligands was analized and quantified in terms of interaction enthalpy (ΔH), Gibbs free energy (ΔG298), geometric and electronic parameters of the resultant octahedral complexes. The ΔH and ΔG298 results show that the ligand coordination strength increases in the following order: carbonyl < thiocarbonyl < imino < phosphoryl. This coordination strength order is also observed in the analysis of the metal‐ligand distances and charges on the ligand atom that interacts with the Ni(II) cation. The electronic character of the substituent R is the main parameter that affects the strength of the metal‐ligand coordination. Ligands containing electron‐donating groups (NH2, OCH3, OH) have more exothermic ΔH and ΔG298 than ligands with electron‐withdrawing groups (Cl, CN, NO2). The metal‐ligand interaction decomposed by means of the energy decomposition analysis (EDA) method shows that the electronic character of the ligand modulates all the components of the metal‐ligand interaction. The absolute softness of the free ligands is correlated with the covalent contribution to the instantaneous interaction energy calculated using the EDA method. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Functionalization of the PNP pincer ligand backbone allows for a comparison of the dialkyl amido, vinyl alkyl amido, and divinyl amido ruthenium(II) pincer complex series [RuCl{N(CH2CH2PtBu2)2}], [RuCl{N(CHCHPtBu2)(CH2CH2PtBu2)}], and [RuCl{N(CHCHPtBu2)2}], in which the ruthenium(II) ions are in the extremely rare square‐planar coordination geometry. Whereas the dialkylamido complex adopts an electronic singlet (S=0) ground state and energetically low‐lying triplet (S=1) state, the vinyl alkyl amido and the divinyl amido complexes exhibit unusual triplet (S=1) ground states as confirmed by experimental and computational examination. However, essentially non‐magnetic ground states arise for the two intermediate‐spin complexes owing to unusually large zero‐field splitting (D>+200 cm?1). The change in ground state electronic configuration is attributed to tailored pincer ligand‐to‐metal π‐donation within the PNP ligand series.  相似文献   

14.
The development of catalytic reactions for synthesizing different compounds from alcohols to save fossil carbon feedstock and reduce CO2 emissions is of high importance. Replacing rare noble metals with abundantly available 3d metals is equally important. We report a manganese‐complex‐catalyzed multicomponent synthesis of pyrimidines from amidines and up to three alcohols. Our reaction proceeds through condensation and dehydrogenation steps, permitting selective C−C and C−N bond formations. β‐Alkylation reactions are used to multiply alkylate secondary alcohols with two different primary alcohols to synthesize fully substituted pyrimidines in a one‐pot process. Our PN5P‐Mn‐pincer complexes efficiently catalyze this multicomponent process. A comparison of our manganese catalysts with related cobalt catalysts indicates that manganese shows a reactivity similar to that of iridium but not cobalt. This analogy could be used to develop further (de)hydrogenation reactions with manganese complexes.  相似文献   

15.
Neutral ZrIV and HfIV diamido complexes stabilized by unsymmetrical dianionic N,C,N′ pincer ligands have been prepared through the simplest and convenient direct metal‐induced Caryl? H bond activation. Simple ligand modification has contributed to highlight the non‐innocent role played by the donor atom set in the control of the cyclometallation kinetics. The as‐prepared bis‐amido catalysts were found to be good candidates for the intramolecular hydroamination/cyclization of primary aminoalkenes. The ability of these compounds to promote such a catalytic transformation efficiently (by providing, in some cases, fast and complete substrate conversion at room temperature) constitutes a remarkable step forward toward catalytic systems that can operate at relatively low catalyst loading and under milder reaction conditions. Kinetic studies and substrate‐scope investigations, in conjunction with preliminary DFT calculations on the real systems, were used to elucidate the effects of the substrate substitution on the catalyst performance and to support the most reliable mechanistic path operative in the hydroamination reaction.  相似文献   

16.
Bond activation and catalysis using s-block metals are of great significance. Herein, a series of calcium pincer complexes with deprotonated side arms have been prepared using pyridine-based PNP and PNN ligands. The complexes were characterized by NMR and X-ray crystal diffraction. Utilizing the obtained calcium complexes, unprecedented N2O activation by metal-ligand cooperation (MLC) involving dearomatization-aromatization of the pyridine ligand was achieved, generating aromatized calcium diazotate complexes as products. Additionally, the dearomatized calcium complexes were able to activate the N−H bond as well as reversibly activate H2, offering an opportunity for the catalytic hydrogenation of various unsaturated molecules. DFT calculations were applied to analyze the electronic structures of the synthesized complexes and explore possible reaction mechanisms. This study is an important complement to the area of MLC and main-group metal chemistry.  相似文献   

17.
Pincer‐type palladium complexes are among the most active Heck catalysts. Due to their exceptionally high thermal stability and the fact that they contain PdII centers, controversial PdII/PdIV cycles have been often proposed as potential catalytic mechanisms. However, pincer‐type PdIV intermediates have never been experimentally observed, and computational studies to support the proposed PdII/PdIV mechanisms with pincer‐type catalysts have never been carried out. In this computational study the feasibility of potential catalytic cycles involving PdIV intermediates was explored. Density functional calculations were performed on experimentally applied aminophosphine‐, phosphine‐, and phosphite‐based pincer‐type Heck catalysts with styrene and phenyl bromide as substrates and (E)‐stilbene as coupling product. The potential‐energy surfaces were calculated in dimethylformamide (DMF) as solvent and demonstrate that PdII/PdIV mechanisms are thermally accessible and thus a true alternative to formation of palladium nanoparticles. Initial reaction steps of the lowest energy path of the catalytic cycle of the Heck reaction include dissociation of the chloride ligands from the neutral pincer complexes [{2,6‐C6H3(XPR2)2}Pd(Cl)] [X=NH, R=piperidinyl ( 1 a ); X=O, R=piperidinyl ( 1 b ); X=O, R=iPr ( 1 c ); X=CH2, R=iPr ( 1 d )] to yield cationic, three‐coordinate, T‐shaped 14e? palladium intermediates of type [{2,6‐C6H3(XPR2)2}Pd]+ ( 2 ). An alternative reaction path to generate complexes of type 2 (relevant for electron‐poor pincer complexes) includes initial coordination of styrene to 1 to yield styrene adducts [{2,6‐C6H3(XPR2)2}Pd(Cl)(CH2?CHPh)] ( 4 ) and consecutive dissociation of the chloride ligand to yield cationic square‐planar styrene complexes [{2,6‐C6H3(XPR2)2}Pd(CH2?CHPh)]+ ( 6 ) and styrene. Cationic styrene adducts of type 6 were additionally found to be the resting states of the catalytic reaction. However, oxidative addition of phenyl bromide to 2 result in pentacoordinate PdIV complexes of type [{2,6‐C6H3(XPR2)2}Pd(Br)(C6H5)]+ ( 11 ), which subsequently coordinate styrene (in trans position relative to the phenyl unit of the pincer cores) to yield hexacoordinate phenyl styrene complexes [{2,6‐C6H3(XPR2)2}Pd(Br)(C6H5)(CH2?CHPh)]+ ( 12 ). Migration of the phenyl ligand to the olefinic bond gives cationic, pentacoordinate phenylethenyl complexes [{2,6‐C6H3(XPR2)2}Pd(Br)(CHPhCH2Ph)]+ ( 13 ). Subsequent β‐hydride elimination induces direct HBr liberation to yield cationic, square‐planar (E)‐stilbene complexes with general formula [{2,6‐C6H3(XPR2)2}Pd(CHPh?CHPh)]+ ( 14 ). Subsequent liberation of (E)‐stilbene closes the catalytic cycle.  相似文献   

18.
Carbon-13 relaxation times, T1, have been measured for ten cobalt(III)–cyclohexanedione dioxime complexes: CH3CH2? Co(Niox)2-p-R-pyridine [R?H, N(CH3)2, CH3, C2H5, C(CH3)3, Cl, Br, CN and COCH3] and CH3CH2? Co(Niox)2-3-N-methylimidazole. The values obtained have been rationalized by making assumptions on the length of the metal—hetrocyclic nitrogen bond. The internal rotation around the axial Co? N (heterocyclic) bond is faster for the 3-N-methylimidazole ligand than for the pyridine ligands. Correlations of the T1 values with the σ-donor and π-acceptor character of the pyridine ligands were attempted. The interpretation of the results suggests the existence of π-back-bonding from the metal to the N-1 pyridine nitrogen atom, in agreement with the results of other workers. This conclusion, however, was not supported by the use of the para-C chemical shift as a criterion for back-bonding in pyridine–transition metal complexes.  相似文献   

19.
In the title compound, [Pt(C18H15N2)Cl], the PtII centre adopts a distorted square‐planar coordination geometry due to the pincer‐type monoanionic N–C–N tridentate ligand. The planar complexes stack viaπ–π interactions to form two‐dimensional accumulated sheets. This packing pattern is in contrast to that in related pincer‐type N–C–N complexes, which exhibit a one‐dimensional columnar stacking.  相似文献   

20.
A series of novel quasi‐scorpionate CNC donor ligands, MeC(2‐C5H4N){CH2(imidazole‐R)} (R = methyl, n‐butyl, n‐propenyl), in which a chelating bis(NHC) core is supplemented by a hemi‐labile pyridyl donor, were prepared. The coordination chemistry of these ligands was investigated with silver, palladium, rhodium and iridium. The single crystal X‐ray structures of [Rh(NC2Me)(COD)]Cl 8a and [Ir(NC2Pr)(COD)]Br 9b were determined. The catalytic potential of the rhodium and iridium complexes was assessed in the transfer hydrogenation of ketones; the iridium complexes, which show superior performance, form very effective and stable catalysts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号