首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A synthetic method for the production of polyethylene (PE) chains carrying alkoxyamine end‐group has been proposed first by successfully reacting the well‐known 2,2,6,6‐tetramethylpiperidine‐N‐oxyl (TEMPO) and N‐(2‐methyl‐2‐propyl)‐N‐(1‐diethylphosphono‐2,2‐dimethylpropyl)‐N‐oxyl (commonly called SG1) stable radicals with dipolyethylenylmagnesium compounds to give PE‐TEMPO and PE‐SG1. Since the homolytic cleavage of these two macroalkoxyamines for the production of block copolymers using controlled radical polymerization would require temperatures higher than 160 °C, two original new nitroxides (4‐[(2,2‐dimethyl‐4‐(Ntert‐Butyl‐N‐(1‐diethoxyphosphoryl‐2,2‐dimethylpropyl)aminoxy)‐4‐n‐butoxycarbonyl)butanoyloxyl]‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy, DD1) and 4‐[(2,2‐dimethyl‐4‐(Ntert‐Butyl‐N‐(1‐diethoxyphosphoryl‐2,2‐dimethylpropyl)aminoxy)‐4‐phenyl) butanoyloxyl]‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy, DD2) containing a TEMPO moiety and incorporating an SG1‐based alkoxyamine (cleavage temperature: 60 °C) were then synthesized. NMR analyses showed that the resulting PE‐DD1 and PE‐DD2 were obtained using this functionalization strategy though with low to moderate yields (from 17% to 40%). PE‐DD2 (40% functionalization) was used under controlled radical polymerization conditions of n‐butyl acrylate. SEC analyses together with 1H NMR analysis showed that a poly(ethylene‐bn‐butyl acrylate) block copolymer was produced and that the polymerization proceeded under control. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2705–2718, 2007  相似文献   

2.
Azide‐alkyne and Diels–Alder click reactions together with a click‐like nitroxide radical coupling reaction were used in a one‐pot fashion to generate tetrablock quaterpolymer. The various living polymerization generated linear polymers with orthogonal end‐functionalities, maleimide‐terminated poly(ethylene glycol) (PEG‐MI), anthracene‐ and azide‐terminated polystyrene, alkyne‐ and bromide‐terminated poly(tert‐butyl acrylate) or alkyne‐poly(n‐butyl acrylate), and tetramethylpiperidine‐1‐oxyl (TEMPO)‐terminated poly(ε‐caprolactone) (PCL‐TEMPO) were clicked together in a one‐pot fashion to generate PEG‐b‐PS‐b‐PtBA‐b‐PCL or PEG‐b‐PS‐b‐PnBA‐b‐PCL quaterpolymer using Cu(0), CuBr, and N,N,N′,N″,N″‐pentamethyldiethylenetriamine as catalyst in dimethyl formamide at 80 °C for 36 h. Linear precursors and target quaterpolymers were analyzed via 1H NMR and gel permeation chromatography. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
In this study, new nitroxides based on the 2,2,5‐trimethyl‐4‐phenyl‐3‐azahexane‐3‐oxy skeleton were used to examine chain‐end control during the preparation of polystyrene and poly(t‐butyl acrylate) under living free‐radical conditions. Alkoxyamine‐based initiators with a chromophore attached to either the initiating fragment or the mediating nitroxide fragment were prepared, and the extent of the incorporation of the chromophores at either the initiating end or the propagating chain end was determined. In contrast to 2,2,6,6‐tetramethyl piperidinoxy (TEMPO), the incorporation of the initiating and terminating fragment into the polymer chain was extremely high. For both poly(t‐butyl acrylate) and polystyrene with molecular weights less than or equal to 70,000, incorporations at the initiating end of greater than 97% were observed. At the terminating chain end, incorporations of greater than 95% were obtained for molecular weights less than or equal to 50,000. The level of incorporation tended to decrease slightly at higher molecular weights because of the loss of the alkoxyamine propagating unit, which had important consequences for block copolymer formation. These results clearly show that these new α‐H nitroxides could control the polymerization of vinyl monomers such as styrene and t‐butyl acrylate to an extremely high degree, comparable to anionic and atom transfer radical polymerization procedures. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4749–4763, 2000  相似文献   

4.
A new strategy for the one‐pot preparation of ABA‐type block‐graft copolymers via a combination of Cu‐catalyzed azide‐alkyne cycloaddition (CuAAC) “click” chemistry with atom transfer nitroxide radical coupling (ATNRC) reaction was reported. First, sequential ring‐opening polymerization of 4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl (GTEMPO) and 1‐ethoxyethyl glycidyl ether provided a backbone with pendant TEMPO and ethoxyethyl‐protected hydroxyl groups, the hydroxyl groups could be recovered by hydrolysis and then esterified with 2‐bromoisobutyryl bromide, the bromide groups were converted into azide groups via treatment with NaN3. Subsequently, bromine‐containing poly(tert‐butyl acrylate) (PtBA‐Br) was synthesized by atom transfer radical polymerization. Alkyne‐containing polystyrene (PS‐alkyne) was prepared by capping polystyryl‐lithium with ethylene oxide and subsequent modification by propargyl bromide. Finally, the CuAAC and ATNRC reaction proceeded simultaneously between backbone and PtBA‐Br, PS‐alkyne. The effects of catalyst systems on one‐pot reaction were discussed. The block‐graft copolymers and intermediates were characterized by size‐exclusion chromatography, 1H NMR, and FT‐IR in detail. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

5.
Heterograft copolymers poly(4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl‐co‐ ethylene oxide)‐graft‐polystyrene and poly(tert‐butyl acrylate) (poly (GTEMPO‐co‐EO)‐g‐PS/PtBA) were synthesized in one‐pot by atom transfer nitroxide radical coupling (ATNRC) reaction via “graft onto.” The main chain was prepared by the anionic ring‐opening copolymerization of ethylene oxide (EO) and 4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl (GTEMPO) first, then the polystyrene and poly (tert‐butyl acrylate) with bromine end (PS‐Br, PtBA‐Br) were prepared by atom transfer radical polymerization (ATRP). When three of them were mixed each other in the presence of CuBr/N,N,N,N,N″‐pentamethyldiethylenetriamine (PMDETA) at 90 °C, the formed secondary carbon radicals at the PS and PtBA chain ends were quickly trapped by nitroxide radicals on poly(GTEMPO‐co‐EO). The heterograft copolymers were well defined by 1H NMR, size exclusion chromatography, fourier transform infrared, and differential scanning calorimetry in detail. It was found that the density of GTEMPO groups on main chain poly(GTEMPO‐co‐EO), the molecular weights of PS/PtBA side chains, and the structure of macroradicals can exert the great effects on the graft efficiency. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6770–6779, 2008  相似文献   

6.
A bicomponent initiation system consisting of 2,2,6,6‐tetramethylpiperidine‐N‐oxyl (TEMPO) and the water soluble initiator potassium persulfate (KPS) was used to develop a robust and versatile semibatch emulsion polymerization process to obtain polystyrene (PS) latexes with solids contents of 5–40 wt %. A window of operating conditions was found that yielded high conversion (>95%) stable latexes and well controlled polymers, overcoming limitations found in previous attempts at developing similar processes using TEMPO. The critical parameters studied were surfactant concentration, monomer concentration in the nucleation step and the monomer feed rate in the semibatch step. Methyl acrylate (MA) was used in the nucleation step to improve the nitroxide efficiency (NEff). Latexes having molecular weight distribution (MWD) with dispersity (?) lower than 1.5, average particle size (Dp) from ≈32 to ≈500 nm, nitroxide efficiencies NEff up to ≈1.0 and monomer conversions >90% were obtained in less than 12 h with solids contents up to 40 wt %. These results constitute a significant advance over prior efforts in TEMPO‐mediated polymerization in aqueous dispersions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 49–62  相似文献   

7.
Two new amphiphilic star graft copolymers bearing hydrophobic poly(tert‐butyl acrylate) backbone and hydrophilic poly(ethylene oxide) (PEO) side chains with different molecular weights were synthesized by sequential reversible addition fragmentation chain transfer (RAFT) polymerization and single electron transfer‐nitroxide radical coupling (SET‐NRC) reaction under mild conditions. RAFT homopolymerization of tert‐butyl 2‐((2‐bromopropanoyloxy)methyl)acrylate was mediated by a four‐armed chain transfer agent in a controlled way to afford a well‐defined starlike backbone with a narrow molecular weight distribution (Mw/Mn = 1.26). The target poly(tert‐butyl acrylate)‐g‐PEO (PtBA‐g‐PEO) star graft copolymers were synthesized by SET‐NRC reaction between Br‐containing PtBA‐based starlike backbone and PEO end functionalized with 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPO) group using copper/N,N,N′,N′,N″‐pentamethyldiethylenetriamine as catalytic system at ambient temperature via grafting‐onto strategy. The critical micelle concentration values of the obtained amphiphilic star graft copolymers in aqueous media and brine were determined by fluorescence probe technique using pyrene as probe. Diverse micellar morphologies were formed by varying the content of hydrophilic PEO segment as well as the initial concentration of stock solution. In addition, poly(acrylic acid)‐g‐PEO double hydrophilic star graft copolymers were obtained by selective acidic hydrolysis of hydrophobic PtBA starlike backbone without affecting PEO side chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

8.
Tetrakis bromomethyl benzene was used as a tetrafunctional initiator in the synthesis of four‐armed star polymers of methyl methacrylate via atom transfer radical polymerization (ATRP) with a CuBr/2,2 bipyridine catalytic system and benzene as a solvent. Relatively low polydispersities were achieved, and the experimental molecular weights were in agreement with the theoretical ones. A combination of 2,2,6,6‐tetramethyl piperidine‐N‐oxyl‐mediated free‐radical polymerization and ATRP was used to synthesize various graft copolymers with polystyrene backbones and poly(t‐butyl methacrylate) grafts. In this case, the backbone was produced with a 2,2,6,6‐tetramethyl piperidine‐N‐oxyl‐mediated stable free‐radical polymerization process from the copolymerization of styrene and p‐(chloromethyl) styrene. This polychloromethylated polymer was used as an ATRP multifunctional initiator for t‐butyl methacrylate polymerization, giving the desired graft copolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 650–655, 2001  相似文献   

9.
A versatile strategy for the preparation of end‐functional polymers and block copolymers by radical exchange reactions is described. For this purpose, first polystyrene with 2,2,6,6‐tetramethylpiperidine‐1‐oxyl end group (PS‐TEMPO) is prepared by nitroxide‐mediated radical polymerization (NMRP). In the subsequent step, these polymers are heated to 130 °C in the presence of independently prepared TEMPO derivatives bearing hydroxyl, azide and carboxylic acid functionalities, and polymers such as poly(ethylene glycol) (TEMPO‐PEG) and poly(ε‐caprolactone) (TEMPO‐PCL). Due to the simultaneous radical generation and reversible termination of the polymer radical, TEMPO moiety on polystyrene is replaced to form the corresponding end‐functional polymers and block copolymers. The intermediates and final polymers are characterized by 1H NMR, UV, IR, and GPC measurements. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2387–2395  相似文献   

10.
Palladium‐catalyzed aminocarbonylation of iodobenzene and iodoalkenes (1‐iodocyclohexene, 4‐tert‐butyl‐1‐iodocyclohexene, α‐iodostyrene, 17‐iodoandrost‐16‐ene) was carried out using a free radical (4‐amino‐TEMPO) for the first time. Its reduced form (4‐amino‐2,2,6,6‐tetramethylpiperidine) was also used as N‐nucleophile. The free radical was partially reduced under aminocarbonylation conditions; however, the isolation of carbonylated products bearing a stable radical moiety was successfully accomplished. It was proved that the reduction of the 1‐oxyl functionality took place to higher extent when more severe conditions (40 bar CO pressure) were used. The mixture of carboxamide and 2‐ketocarboxamide products was obtained using iodobenzene because of single and double carbon monoxide insertion, respectively. In turn, carboxamide derivatives were formed exclusively when iodoalkenes were used as substrates.  相似文献   

11.
Summary: The formation of a molecular‐complex crystalline phase of syndiotactic polystyrene (sPS) that contains a stable nitroxide radical compound, 2,2,6,6‐tetramethylpiperidinyl‐N‐oxyl (TEMPO), is confirmed by IR and electron spin resonance (ESR) spectroscopy, X‐ray diffractometry, and thermogravimetric analysis. Through a guest exchange procedure assisted by a plasticizing agent, the original guest (chloroform) contained in the starting clathrate phase is completely replaced by TEMPO. Although the conformational regularity of the sPS helices in the resultant crystalline phase that contains TEMPO is similar to that in the starting clathrate phase, the host lattice expands in the 010 direction. The guest TEMPO molecules exhibit a significantly broadened ESR signal because of their highly concentrated state in the complex crystalline phase.

Thermogravimetric measurement of a powder sample of the sPS/TEMPO complex.  相似文献   


12.
Poly(perfluorooctyl‐ethylenoxymethylstyrene) (PFDS) and poly(1,1,2,2‐tetrahydroperfluorodecyl acrylate) (PFDA) homopolymers as well as poly(styrene)‐b‐poly(perfluorooctyl‐ethylenoxymethylstyrene) (PS‐b‐PFDS) and poly(styrene)‐b‐poly(1,1,2,2‐tetrahydroperfluorodecyl acrylate) acrylate) (PS‐b‐PFDA) block copolymers of various chain lengths were synthesized by nitroxide‐mediated radical polymerization in the presence of either 2,2,6,6‐tetramethyl‐1‐piperidinyloxy free radical (TEMPO) in the case of FDS monomer or Ntert‐butyl‐N‐(1‐diethylphosphono‐2,2‐dimethylpropyl)‐N‐oxyl (DEPN) in the case of the FDA monomer. The molar composition of the block copolymers was determined by elemental analysis and proton NMR while the blocky structure was checked by SEC analysis in trifluorotoluene. Block copolymers PS‐b‐PFDS (3.6K/60K) and PS‐b‐PFDA (3.7K/43K) were soluble in neat CO2 at moderate pressure and temperature, indicating the formation of micelles. Similar block copolymers with a longer PS block such as PS‐b‐PFDA (9.5K/49K), corresponding to a lower CO2‐philic/CO2‐phobic balance, were insoluble in neat CO2 but could be solubilized in the presence of styrene as a cosolvent. Additionally, surface and bulk properties of PS‐b‐PFDA were investigated, indicating the same surface tension as for the PFDA homopolymer (γLV = 10.3 mN/m) and a bulk nanostructured morphology. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3537–3552, 2004  相似文献   

13.
Well‐defined linear furan‐protected maleimide‐terminated poly(ethylene glycol) (PEG‐MI), tetramethylpiperidine‐1‐oxyl‐terminated poly(ε‐caprolactone) (PCL‐TEMPO), and azide‐terminated polystyrene (PS‐N3) or ‐poly(N‐butyl oxanorbornene imide) (PONB‐N3) were ligated to an orthogonally functionalized core ( 1 ) in a two‐step reaction mode through triple click reactions. In a first step, Diels–Alder click reaction of PEG‐MI with 1 was performed in toluene at 110 °C for 24 h to afford α‐alkyne‐α‐bromide‐terminated PEG (PEG‐alkyne/Br). As a second step, this precursor was subsequently ligated with the PCL‐TEMPO and PS‐N3 or PONB‐N3 in N,N‐dimethylformamide at room temperature for 12 h catalyzed by Cu(0)/Cu(I) through copper‐catalyzed azide‐alkyne cycloaddition and nitroxide radical coupling click reactions, yield resulting ABC miktoarm star polymers in a one‐pot mode. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
由于脂肪醇羟基和苄醇羟基具有相同的氧化反应活性,所以当分子内同时含有脂肪醇羟基和苄醇羟基时,很难选择氧化苄醇羟基合成含脂肪醇羟基的芳香醛或酮。本文报道了在离子液体-水介质中,NCS/NaBr/IL-TEMPO(离子液体负载TEMPO)催化氧化合成含有脂肪醇羟基的芳香醛、酮的方法,反应条件温和,选择性好,收率高,且离子液体和催化剂可以循环使用。  相似文献   

15.
Nortropine‐N‐oxyl (NNO) was synthesized in a single step from nortropine. The electrocatalytical activity of NNO was evaluated by cyclic voltammetry in pH7.0 phosphate buffer solution. The anodic peak current for ethanol, isopropanol and glucose was enhanced, showing these alcohols were oxidized by electrocatalytic effect of NNO. On the other hand, TEMPO derivative (4‐hydroxy‐2,2,6,6,‐terramethylpiperidine N‐oxyl free radical) could not oxidize the alcohols under the same condition. The electrochemical response of the NNO to glucose was investigated. The anodic peak current increased with an increase in the concentration of glucose. A linear response to the glucose concentration ranging from 0.1 to 10 mM was obtained.  相似文献   

16.
The thermal decomposition of five alkoxyamines labeled TEMPO–R, where TEMPO was 2,2,6,6‐tetramethylpiperidinyl‐N‐oxyl and R was cumyl (Cum), 2‐tert‐butoxy‐carbonyl‐2‐propyl (PEst), phenylethyl (PhEt), 1‐tert‐butoxy‐carbonylethyl (EEst), or 1‐methoxycarbonyl‐3‐methyl‐3‐phenylbutyl (Acrylate‐Cum), was studied with 1H NMR in the absence and presence of styrene and methyl methacrylate. The major products were alkenes and the hydroxylamine 1‐hydroxy‐2,2,6,6‐tetramethyl‐ piperidine (TEMPOH), and in monomer‐containing solutions, unimeric and polymeric alkoxyamines and alkenes were also found. Furthermore, the reactions between TEMPO and the radicals EEst and PEst were studied with chemically induced dynamic nuclear polarization. In comparison with coupling, TEMPO reacted with the radicals Cum, PEst, PhEt, and EEst and their unimeric styrene adducts by disproportionation to alkenes and TEMPOH only to a minor extent (0.6–3%) but with the radical adducts to methyl methacrylate to a considerable degree (≥20%). Parallel to the radical cleavage, TEMPO–EEst (but not the other alkoxyamines or TEMPO–Acrylate‐Cum) underwent substantial nonradical decay. The consequences for TEMPO‐mediated living radical polymerizations are discussed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3604–3621, 2001  相似文献   

17.
Summary: The possibility of transforming a living anionic polymerization into a stable radical‐mediated radical polymerization (SFRP) was demonstrated. For this purpose, 2,2,6,6‐tetramethylpiperidine‐N‐oxyl (TEMPO) alcoholate, formed by a one‐electron redox reaction between potassium naphthalene and TEMPO, was used to initiate the living anionic polymerization of ethylene oxide (EO). Poly(ethylene oxide) obtained in this way possessed TEMPO terminal units and was subsequently used as an initiator for the SFRP of styrene to give block copolymers.

A one‐electron redox reaction gives rise to TEMPO alcoholate, which is able to initiate the living anionic polymerization of ethylene oxide (EO).  相似文献   


18.
Bulk free‐radical polymerization of 2‐vinylpyridine (2VP) in the presence of 2,2,6,6‐tetramethylpiperidine‐N‐oxyl (TEMPO) was studied under different conditions (temperature and presence of additives). Linear poly‐(2‐vinylpyridine) with a narrow molecular weight distribution and controllable molecular weight was prepared in the presence of acetic anhydride at 95 °C up to a conversion of 66%. At higher conversions side reactions became very important (pseudoliving polymerization). By applying this procedure, well‐defined random copolymers of 2VP with styrene or tert‐butylmethacrylate as well as block copolymers of 2VP with styrene were synthesized. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2889–2895, 2001  相似文献   

19.
The synthesis of ABC triblock copolymers were accomplished by Cu(0)‐catalyzed one‐pot strategy combining single electron transfer‐nitroxide radical coupling (SET‐NRC) reaction with “click” chemistry. First, the precursors α,ω‐heterofunctionalized poly(ethylene oxide) (PEO) with a 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPO) group and an alkyne group, polystyrene (PS), and poly(tert‐butyl acrylate) (PtBA) with bromine or azide end group were designed and synthesized, respectively. Then, the one‐pot coupling reactions between these precursors were carried out in the system of Cu(0)/Me6TREN: The SET‐NRC reaction between bromine group and nitroxide radical group, subsequently click coupling between azide and alkyne group. It was noticeable that Cu(I) generated from Cu(0) by SET mechanism was utilized to catalyze click chemistry. To estimate the effect of Cu(0) on the one‐pot reaction, a comparative analysis was performed in presence of different Cu(0) species. The result showed that Cu(0) with more active surface area could accelerate the one‐pot reaction significantly. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
《Electroanalysis》2018,30(1):24-26
The electrocatalytic activity of a 2,2,6,6‐tetramethylpipridine‐N‐oxyl (TEMPO)‐modified electrode toward the oxidation of carbohydrates in phosphate buffer solution was investigated under neutral aqueous solution conditions at 25 °C. The modified electrode was prepared on the surface of a glassy carbon electrode by the electrochemical polymerization of a TEMPO precursor containing a pyrrole side chain. Cyclic voltammetric studies showed that the anodic peak current increased with the concentration of carbohydrates in a dose‐dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号