首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In-situ attenuated total reflection (ATR)-FTIR spectroscopy was used to monitor the consecutively alternating adsorption of polyethylenimine (PEI) and poly(acrylic acid) (PAC) onto both Si crystals (SiO) and CO2 plasma-treated polypropylene (PP) films. The vibration band vas(COO) and v(CO) of PAC are diagnostic for the polyelectrolyte layer build-up and sensitive to protonation changes. Human serum albumine (HSA) adsorption experiments revealed a strong decrease of fouling for the PP films, which were modified with polyelectrolyte multilayers, in comparison to the unmodified ones.  相似文献   

2.
The reversible switching of uptake and release of the proteins lysozyme (LYZ, IEP = 11.1) and human serum albumin (HSA, IEP = 4.8) at the surface attached polyelectrolyte multilayer (PEM) consisting of poly(ethylene-imine) (PEI) and poly(acrylic acid) (PAC) is shown. Protein adsorption could be switched by pH setting due to electrostatic interaction. Adsorption of positively charged LYZ at PEM-6 took place at pH = 7.3, where the outermost PAC layer was negatively charged. Complete desorption was obtained at pH = 4, where the outermost PAC layer was neutral. Additionally the charge state of the last adsorbed PAC layer in dependence of the pH of the medium could be determined in the ATR-FTIR difference spectra by the ν(COO) and ν(C=O) band due to carboxylate and carboxylic acid groups. Adsorption of negatively charged HSA at PEM-7 was achieved at pH = 7.3, where the outermost PEI layer was positively charged. Part desorption was obtained at pH = 10, where the outermost PEI layer was neutral. PEM of PEI/PAC may be used for the development of bioactive and bionert materials and protein sensors.  相似文献   

3.
Methylene blue-photosensitized isomerization of cis-p-(phenylazo) phenyltrimethylammonium iodide to the transisomer was used advantageously to investigate the effect of polyanions on the triplet excitation energy trasfer between cationic dyes in aqueous media. The efficiency of the excitation energy transfer was improved by the addition of potassium poly(vinyl sulfate) (PVS), potassium poly(styrene-sulfonate) (PSS), sodium poly(acrylate) (PAA), and sodium poly(methacrylate) (PMA) and was dependent on the polyanion concentration in the system. PVS and PSS were much more effective than PAA and PMA. The efficiency of the excitation energy transfer under the most appropriate conditions was about 67 times higher than in the absence of polyanions. Correlation with dye binding to polyanions and the efficiency of the excitation energy transfer between dyes was discussed.  相似文献   

4.
Mixed surfactant-polyelectrolyte multilayer films were fabricated by both ionic self-assembly and spin assembly. A polycation [PEI = poly(ethylenimine)] was deposited from a dilute solution, while a polyanion (PAZO = poly[1-[4-(3-carboxy-4-hydroxyphenylazo) benzenesulfonamido]-1,2-ethanediyl, sodium salt]) was deposited from a mixture containing a fixed concentration of polyanion and various concentrations of the anionic surfactant sodium dodecyl sulfate (SDS). Coadsorption of SDS and PAZO onto PEI layers was observed using both deposition methods and attributed to strong PEI-SDS interactions and entropic factors. Increasing the concentration of SDS resulted in films containing progressively less adsorbed PAZO. No further reduction in the amount of adsorbed PAZO was observed above the SDS critical micelle concentration. We attribute the film growth behavior to a fast adsorption of SDS onto PEI, followed by a slower adsorption of PAZO onto the remaining unoccupied binding sites. We observe that SDS interpenetrates throughout the PAZO and PEI layers, increasing the surface hydrophobicity of both. We observed similar behavior for both ionically self-assembled and spin-assembled systems.  相似文献   

5.
Summary: The deposition and the nanostructure of polyelectrolyte multilayers (PEM) of branched poly(ethyleneimine)/poly(acrylic acid) (PEI/PAC) was studied in dependence of the adsorption time (tADS) of the individual steps. PEM were reproducibly deposited applying up to z = 20 adsorption steps at the fixed pH combination of 10/4 and polyelectrolyte concentration cPEL = 0.005 M in a flow cell using an automated valve system. in situ ATR-FTIR spectroscopy and SFM were used for quantitative determination of deposited amount and thickness, respectively. A linear relation between PEL band integrals and thickness of thin PEM films was found. Varying tADS from 0.5 to 5 min in each of the adsorption steps resulted in a steep rise of the deposited PEM amount. For tADS > 5 min the deposition did only marginally increase. Evidence for the release of outermost located PEI upon PAC immersion (even step) and of outermost PAC upon PEI immersion (odd step) was obtained. SFM images on consecutively deposited PEM-6 showed a slight increase in structure size and roughness for increasing tADS. These studies help to prepare polyelectrolyte based films with controlled thickness for the interaction with biofluids in the biomedical and food field.  相似文献   

6.
An efficient method for characterizing wetting properties of heterogeneous surfaces produced by sequential adsorption of polyelectrolytes was developed. Three types of polyelectrolytes were used: polyallylamine hydrochloride (PAH), polyethyleneimine (PEI), both of a cationic type, and polysodium 4-styrenesulfonate (PSS), of an anionic type. Multilayer films were prepared by 'layer-by-layer' (LbL) deposition technique. Natural ruby mica, glass, titanium foil and silicon wafers were used as the support material for PE films. Wetting of polyelectrolyte films was determined experimentally by contact angle measurements, using technique of direct image analysis of shape of sessile drops. Periodic oscillations in contact angle values were observed for multilayers terminated by polycation and polyanion, respectively, and the variations in contact angle values strongly depended on the conditions of adsorption and multilayer treatment after deposition. Therefore, the influence of ionic strength of polyelectrolyte solution used for deposition on wetting of multilayer films was considered and also the effect of conditioning in different environments was investigated. It is usually assumed that film properties and stability strongly depend on the first layer which is used to anchor a multilayer at the surface of support material. To investigate influence of the first layer, PAH/PSS films were compared with more complex ones having PEI as the first layer with a sequence of PSS/PAH deposited on top of it.  相似文献   

7.
Layer-by-layer (LBL) polyelectrolyte films were constructed from poly(L-glutamic acid) (PGA) and poly(L-aspartic acid) (PAA) as polyanions, and from poly(L-lysine) (PLL) as the polycation. The terminating layer of the films was always PLL. According to attenuated total reflection Fourier transform infrared measurements, the PGA/PLL and PAA/PLL films, despite their chemical similarity, had largely different secondary structures. Extended beta-sheets dominated the PGA/PLL films, while alpha-helices and intramolecular beta-sheets dominated the PAA/PLL films. The secondary structure of the polyelectrolyte film affected the adsorption of human serum albumin (HSA) as well. HSA preserved its native secondary structure on the PGA/PLL film, but it became largely deformed on PAA/PLL films. Both PGA and PAA were able to extrude to a certain extent the other polyanion from the films, but the structural consequences were different. Adding PAA to a (PGA/PLL)5-PGA film resulted in a simple exchange and incorporation: PGA/PLL and PAA/PLL complexes coexisted with their unaltered secondary structures in the mixed film. The incorporation of PGA into a (PAA/PLL)5-PAA film was up to 50% and caused additional beta-structure increase in the secondary structure of the film. The proportions of the two polyanions were roughly the same on the surfaces and in the interiors of the films, indicating practically free diffusion for both polyanions. The abundance of PAA/PLL and PGA/PLL domains on the film surfaces was monitored by the analysis of the amide I region of the infrared spectrum of a reporter molecule, HSA, adsorbed onto the three-component polyelectrolyte films.  相似文献   

8.
The role of polymer charge density in the kinetics of the adsorption and desorption, on silica, of the polyelectrolyte poly(ethyleneimine) (PEI) was investigated by stagnation-point flow reflectometry. In the first series of experiments, PEI solutions were introduced at the same ionic strength and pH as the background solvent. It was found that the adsorbed amount of PEI increased by increasing pH. In the second series of investigations, several PEI solutions with ascending pH were introduced consecutively into the cell. In these cases, a stepwise buildup of the adsorbed amount was observed and the "final" adsorbed amounts were observed to be roughly equal with the adsorbed amounts of the first series of measurements at the same pH. Finally, adsorption/desorption experiments were performed where the preadsorption of PEI was followed by the introduction of PEI solutions of descending pH. No desorption was detected when the pH changed from pH = 9.7 to pH = 5.8. However, when there was a 9.7 --> 3.3 or 5.8 --> 3.3 decrease in the pH, the kinetic barriers of desorption seemed to completely disappear and roughly the same adsorbed amount as in the first series of experiments at pH = 3.3 was quickly attained by desorption of the PEI. This study reveals the high impact of pH, affecting parameters such as charge density of the surface and polyelectrolyte as well as the structure of the adsorbed macromolecules, on the desorption properties of weak polyelectrolytes. The observed interfacial behavior of PEI may have some important consequences for the stability of alternating polyelectrolyte multilayers containing weak polyelectrolytes.  相似文献   

9.
The adsorption of human serum albumin (HSA) onto colloidal TiO2 (P25 Degussa) particles was studied in NaCl electrolyte at different solution pH and ionic strength. The HSA-TiO2 interactions were studied using adsorption isotherms and the electrokinetic properties of HSA-covered TiO2 particles were monitored by electrophoretic mobility measurements. The adsorption behavior shows a remarkable dependence of the maximum coverage degree on pH and was almost independent of the ionic strength. Other characteristic features such as maximum adsorption values at the protein isoelectric point (IEP approximately 4.7) and low-affinity isotherms that showed surface saturation even under unfavorable electrostatic conditions (at pH values far away from the HSA IEP and TiO2 PZC) were observed. Structural and electrostatic effects can explain the diminution of HSA adsorption under these conditions, assuming that protein molecules behave as soft particles. Adsorption reactions are discussed, taking into account acid-base functional groups of the protein and the surface oxide in different pH ranges, considering various types of interactions.  相似文献   

10.
The heme protein cytochrome c (Cyt-c), immobilized on polyelectrolyte multilayers on a silver electrode, was studied by stationary and time-resolved surface-enhanced resonance Raman (SERR) spectroscopy to probe the redox site structure and the mechanism and dynamics of the potential-dependent interfacial processes. The layers were built up by sequential adsorption of polycations (poly[ethylene imine] (PEI); polyallylamine hydrochloride (PAH)) and polyanions (poly[styrene sulfonate] (PSS)). All multilayers terminated by PSS electrostatically bind Cyt-c. On PEI/PSS coatings, Cyt-c is peripherally bound and fully redox-active. Due to the interfacial potential drop, the apparent redox potential is lowered by 40 mV compared to that in solution. The rate constant for the heterogeneous electron transfer (ET) of ca. 0.1 s(-1) is consistent with electron tunneling through largely ordered PEI/PSS layers. ET is coupled to a reversible conformational transition of Cyt-c that involves a change of the coordination pattern of the heme. Additional (PAH/PSS) double layers cause a broadening of the redox transition and a drastic negative shift of the redox potential, which is attributed to the formation of PSS/Cyt-c complexes. It is concluded that Cyt-c can effectively compete with PAH for binding of PSS, resulting in a rearrangement of the layered structure and a penetration of the PSS-bound Cyt-c into the PAH/PSS double layers. This conclusion is consistent with SERR intensity and quartz microbalance measurements. ET was found to be overpotential-independent and faster than that for PEI/PSS coatings, which is interpreted in terms of specific PSS/Cyt-c complexes serving as gates for the heterogeneous ET.  相似文献   

11.
Ethanol/water pervaporation through ultrathin polyelectrolyte multilayer membranes is described. The membranes were prepared by the layer-by-layer technique, i.e. by alternating sequential adsorption of cationic and anionic polyelectrolytes on a porous support. The separation capability was optimized by variation of the chemical structure of the polyelectrolytes, by variation of pH and ionic strength of the polyelectrolyte solutions used for membrane preparation and by annealing of the polyelectrolyte membranes. It was found that the separation is mainly affected by the charge density of the polyelectrolytes which is controlled by the chemical structure and the degree of ionisation of the polar groups. Selectivity for water was highest, if polyelectrolytes of high charge density such as polyethyleneimine (PEI), polyvinylamine (PVA) and polyvinylsulfate (PVS) were used and if the pH of the polyelectrolyte solutions was equal to the mean of the pKa values of the corresponding cationic and anionic polyelectrolyte. Best results were obtained for PVA/PVS and PEI/PVS membranes which are characterized in detail with regard to their separation behavior.  相似文献   

12.
We have used anionic and cationic single-wall carbon nanotube polyelectrolytes (SWNT-PEs), prepared by the noncovalent adsorption of ionic naphthalene or pyrene derivatives on nanotube sidewalls, for the layer-by-layer self-assembly to prepare multilayers from carbon nanotubes with polycations, such as poly(diallyldimethylammonium) or poly(allylamine hydrochloride) (PDADMA or PAH, respectively), and polyanions (poly(styrenesulfonate), PSS). This is a general and powerful technique for the fabrication of thin carbon nanotube films of arbitrary composition and architecture and allows also an easy preparation of all-SWNT (SWNT/SWNT) multilayers. The multilayers were characterized with vis-near-IR spectroscopy, X-ray photoelectron spectroscopy (XPS), surface plasmon resonance (SPR) measurements, atomic force microscopy (AFM), and imaging ellipsometry. The charge compensation in multilayers is mainly intrinsic, which shows the electrostatic nature of the self-assembly process. The multilayer growth is linear after the initial layers, and in SWNT/polyelectrolyte films it can be greatly accelerated by increasing the ionic strength in the SWNT solution. However, SWNT/SWNT multilayers are much more inert to the effect of added electrolyte. In SWNT/SWNT multilayers, the adsorption results in the deposition of 1-3 theoretical nanotube monolayers per adsorbed layer, whereas the nominal SWNT layer thickness is 2-3 times higher in SWNT/polyelectrolyte films prepared with added electrolyte. AFM images show that the multilayers contain a random network of nanotube bundles lying on the surface. Flexible polyelectrolytes (e.g., PDADMA, PSS) probably surround the nanotubes and bind them together. On macroscopic scale, the surface roughness of the multilayers depends on the components and increases with the film thickness.  相似文献   

13.
Urease has been immobilized and layered onto the walls of manufactured silicon microchannels. Enzyme immobilization was performed using layer-by-layer nano self-assembly. Alternating layers of oppositely charged polyelectrolytes, with enzyme layers “encased” between them, were deposited onto the walls of the silicon microchannels. The polycations used were polyethylenimine (PEI), polydiallyldimethylammonium (PDDA), and polyallylamine (PAH). The polyanions used were polystyrenesulfonate (PSS) and polyvinylsulfate (PVS). The activity of the immobilized enzyme was tested by pumping a 1 g/L urea solution through the microchannels at various flow rates. Effluent concentration was measured using an ultraviolet/visible spectrometer by monitoring the absorbance of a pH sensitive dye. The architecture of PEI/PSS/PEI/urease/PEI with single and multiple layers of enzyme demonstrated superior performance over the PDDA and PAH architectures. The precursor layer of PEI/PSS demonstrably improved the performance of the reactor. Conversion rates of 70% were achieved at a residence time of 26 s, on d 1 of operation, and >50% at 51 s, on d 15 with a six-layer PEI/urease architecture.  相似文献   

14.
We report on the deposition and properties of multilayers composed of reactive polymers on planar surfaces. As reactive polymers the poly cations poly(ethylene‐imine), poly(L‐lysine) (PLL), poly(allylamime) (PAA) and the polyanions poly(acrylate) (PAC), poly(vinylsulfate), poly(maleate‐co‐olefines) were used. ATR‐FTIR Spectroscopy was adopted to study deposition, binding and stimulation properties of polymer multilayers. The binding of charged species of different molecular size such as rhodanide anions and sodium oleate from solution was examined, whereby binding was found to be dependent on the charge of the outermost layer. For these two analytes a selectivity parameter Q, defined as the ratio between the adsorbed amount obtained at the negatively charged and that at the positively charged surface, respectively, was determined. Furthermore, swelling experiments on multilayer assemblies of PLL and PAC exposed to mixtures of ethanol/water (10–70% EtOH content) were carried out. Our experiments gave evidence, that the PLL layers showed a more significant increase in density than the PAC layers. The conformation of PLL incorporated into multilayers could be changed by pH variation.  相似文献   

15.
Summary: Two chiral polyelectrolyte multilayers (PEM) composed of poly(L-lysine) (PLL) and poly(vinylsulfate) (PVS) as well as poly(ethyleneimine-maltose) (PEI-m) and poly(vinylsulfate) and a nonchiral PEM composed of poly(ethyleneimine) (PEI) and poly(vinylsulfate) were deposited on a silica surface using the layer by layer method. For both PEM enantiospecific interaction towards one enantiomer of either L-/D- glutamic acid (L-/D-GLU) or L-/D-ascorbic acid (L-/D-ASC), respectively, was checked under variation of the concentration. Both deposition and enantiospecific interaction were studied by attenuated total reflection Fourier transform (ATR-FTIR) spectroscopy. Preliminary results show a significant enantiospecific preference of D- GLU over L-GLU at PEM of PLL/PVS and of D-ASC over L-ASC at PEM of PEI-m/PVS and no such preference for nonchiral PEM of PEI/PVS. PEM of PLL/PVS shows higher enantiospecifity with increasing L-/D-GLU concentration.  相似文献   

16.
Crosslinked N,N′-Diethylaminoethyl (DEAE) groups containing dextran microbeads have been used in human serum albumin (HSA) adsorption-desorption studies. For the HSA adsorption onto positively charged hydrophilic DEAE dextran microbeads, the adsorption kinetic was slightly decreased by the changing concentration of the protein solution. Adsorption kinetics and equilibrium isotherms for the adsorption of HSA on crosslinked DEAE dextran have been determined experimentally. Modeling of the adsorption processes on DEAE dextran microbeads were realized by applying different adsorption isotherms. Among the several isotherm equations, Langmuir and Freundlich adsorption isotherms were investigated depending on the two temperatures. These were only slightly dependent on the initial concentration of HSA but were considerably affected by the pH of the medium. The HSA adsorption capacity factor and the adsorption equilibrium constant were obtained and mathematical modeling of adsorption, adsorption rate constants and maximum adsorption were determined. Besides the adsorption mechanism, optimum ionic strength and optimum pH also were investigated. Desorption studies and desorption ratio of the system were determined for optimum medium conditions. It was been proved both experimentally and theoretically that human HSA is adsorbed by electrostatic attraction, ion-exchange, hydrophobic interaction and/or hydrogen bonding.  相似文献   

17.
Of the two synthetic polyanions poly-(styrene sulfonate) (PSS) and poly-(vinyl sulfate) (PVS), the latter induces sharper metachromasia in the cationic dye crystal violet (CV); DNA, however, fails to induce metachromasia in the dye. Contrary to speculation, DNA binds CV, though a nonintercalating dye, rather strongly and holds a portion of the dye even in the presence of PSS or PVS, which induces strong metachromasia. Induced circular dichroism (ICD) in CV by DNA shows that DNA binds CV, and partial reduction of ellipticity of DNA-CV by PVS shows that CV distributes itself between the two polyanions. DNA is shown to be the winner in the competitive binding of CV even with the strong polyanion heparin (Hep) as the competitor. This has been interpreted as being due to the binding of CV to DNA, primarily by ionic attraction stabilized further by nonionic forces like H-bonding in the grooves of DNA. Quantitative estimations of the association constants of DNA-CV and PVS-CV by Scatchard plot come to 0.74 × 106 and 1.28 × 106 mol−1, respectively.  相似文献   

18.
Effect of polyanions on the aggregation of methylene blue (MB) was investigated spectrophotometrically. The following polyanions were used: potassium poly(vinyl sulfate), potassium poly(styrenesulfonate), sodium poly(methacrylate), and sodium poly(acrylate). The state of aggregation was largely dependent on the kind of polyanion and polyanion-MB ratio. MB-photo-sensitized isomerization of cis-p-(phenylazo)phenyltrimethylammonium iodide(cis-PTA) to the transisomer was used advantageously to investigate the effect of dye aggregation on the triplet excitation energy transfer between cationic dyes bound to polyanions. Although the efficiency of the excitation energy transfer between MB and cis-PTA was enhanced by the addition of polyanions, the formation of highly aggregated MB reduced the efficiency of the excitation energy transfer. Correlation with the dye aggregation induced by polyanions and the efficiency of excitation energy transfer between dyes was discussed.  相似文献   

19.
Adsorption of proteins onto film surfaces built up layer by layer from oppositely charged polyelectrolytes is a complex phenomenon, governed by electrostatic forces, hydrogen bonds, and hydrophobic interactions. The amounts of the interacting charges, however, both in polyelectrolytes and in proteins adsorbed on such films are a function of the pH of the solution. In addition, the number and the accessibility of free charges in proteins depend on the secondary structure of the protein. The subtle interplay of all these factors determines the adsorption of the proteins onto the polyelectrolyte film surfaces. We investigated the effect of these parameters for polyelectrolyte films built up from weak "protein-like" polyelectrolytes (i.e., polypeptides), poly(L-lysine) (PLL), and poly(glutamic acid) (PGA) and for the adsorption of human serum albumin (HSA) onto these films in the pH range 3.0-10.5. It was found that the buildup of the polyelectrolyte films is not a simple function of the pure charges of the individual polyelectrolytes, as estimated from their respective pKa values. The adsorption of HSA onto (PLL/PGA)n films depended strongly on the polyelectrolyte terminating the film. For PLL-terminated polyelectrolyte films, at low pH, repulsion, as expected, is limiting the adsorption of HSA (having net positive charge below pH 4.6) since PLL is also positively charged here. At high pH values, an unexpected HSA uptake was found on the PGA-ending films, even when both PGA and HSA were negatively charged. It is suggested that the higher surface rugosity and the decrease of the alpha-helix content at basic pH values (making accessible certain charged groups of the protein for interactions with the polyelectrolyte film) could explain this behavior.  相似文献   

20.
This study concerns the design of protein-resistant polymer adsorbed layers for the control of surface binding of biospecific recognition entities. Polymer surface layers were prepared using the adsorption of poly(allylamine hydrochloride) (PAH), poly(l-lysine) (PL), and branched and linear polyethyleneimine (PEI) and further modified by the covalent attachment of biotin for specific avidin attachment. The adsorption of PAH, PL, and PEI on silicon substrates was studied as a function of pH and ionic strength using ellipsometry. Average dry layer thicknesses of approximately 10, approximately 5, approximately 9, and approximately 3 A (+/-1 A) were obtained when polymer adsorption occurred from solutions at pH 9.5 that contained 0.5 M NaCl for PAH, PL, branched PEI, and linear PEI, respectively. These polymers showed significant differences in their efficiency to suppress nonspecific avidin adsorption. At low ionic strength, avidin adsorption occurred on all polymer-coated surfaces at basic pH values, despite the same positive electrostatic charge for protein globules and the surface. Though the net electrostatic repulsion between avidin molecules and branched PEI was efficiently screened in a protein solution of pH 7 and 0.15 M NaCl, branched-PEI coatings of high molecular weight were unique in their ability to provide avidin-resistant surfaces as a result of steric hindrance from the branched architecture of adsorbed polymer chains. All polymers studied were effective in suppressing avidin adsorption at pH 3 as a result of protonation of the avidin surface functional groups at this pH. Branched-PEI-coated surfaces were also effective for the suppression of smaller positively charged proteins such as lysozyme and ribonuclease A at pH 7 and 0.15 M NaCl. They were also resistant to the adsorption of negatively charged proteins such as BSA and fibrinogen at pH 7 and 0.75 M NaCl. Furthermore, by using PEI-modified protein-repellent surfaces, selective binding of avidin was achieved to surface-bound silver nanoparticles, which should provide a promising application for the label-free detection of biological species using surface-enhanced Raman scattering (SERS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号