共查询到20条相似文献,搜索用时 15 毫秒
1.
Carmine Capacchione Daniela Saviello Antonietta Avagliano Antonio Proto 《Journal of polymer science. Part A, Polymer chemistry》2010,48(19):4200-4206
Copolymerization of ethylene with isoprene (IP) catalyzed by 1,4‐dithabutanediyl‐linked bis(phenolato) titanium complexes 1 and 2 and methylaluminoxane (MAO) produced exclusively ethylene‐IP copolymers with good activity. The copolymer microstructure can be varied by changing the ratio between the monomers in the copolymerization feed, affording copolymers with IP content ~60%. The copolymer microstructure was fully elucidated by 13C‐NMR spectroscopy of the copolymers with various IP content revealing a strong tendency to the alternating microstructure. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4200–4206, 2010 相似文献
2.
3.
Andreia Valente Philippe Zinck André Mortreux Marc Visseaux 《Journal of polymer science. Part A, Polymer chemistry》2011,49(7):1615-1620
A series of lanthanum and neodymium borohydrido complexes comprising the trisborohydrides Nd(BH4)3(THF)3 ( 1a ) and La(BH4)3(THF)3 ( 1b ) and the half‐lanthanidocenes Cp*Nd(BH4)2(THF)2 ( 2a ) (Cp* = C5Me5) and Cp*La(BH4)2(THF)2 ( 2b ) has been assessed for the chain transfer copolymerization of isoprene and styrene. A transmetalation process is occurring efficiently with the borohydride complexes in the presence of magnesium dialkyl. The transmetalation is accompanied by (i) a gradual decrease of the 1,4‐trans stereoselectivity of the reaction at the benefit of 3,4‐selectivity and (ii) an increase in the quantity of styrene inserted in the copolymer. This can be at least partially attributed to a magnesium induced co‐oligomerization of isoprene and styrene. By combining dialkylmagnesium and trialkylaluminum, a 1,4‐trans stereospecific reversible coordinative chain transfer copolymerization of isoprene and styrene is observed when the half‐lanthanocene 2b is used as precatalyst. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
4.
Andreia Valente Philippe Zinck Marta J. Vitorino A. Mortreux M. Visseaux 《Journal of polymer science. Part A, Polymer chemistry》2010,48(21):4640-4647
A series of lanthanum and neodymium complexes comprising the half‐lanthanidocenes Cp*La(BH4)2(THF)2 (Cp* = C5Me5) ( 1 ) and Cp*Nd(BH4)2(THF)2 ( 2 ), the trisborohydrides La(BH4)3(THF)3 ( 3 ) and Nd(BH4)3(THF)3 ( 4 ), the trichlorides LaCl3(THF)3 ( 5 ) and NdCl3(THF)3 ( 6 ), the triisopropoxides La(OiPr)3 ( 7 ) and Nd(OiPr)3 ( 8 ), and the triaryloxide Nd(OC6H3‐tBu2‐2,6)3 ( 9 ) has been assessed for the chain transfer polymerization of isoprene. A transmetalation process is occurring efficiently with the borohydride complexes in the presence of magnesium dialkyl. A gradual decrease of the 1,4‐trans stereoselectivity of the reaction is observed at the benefit of 3,4‐selectivity with increasing quantities of magnesium dialkyl. This can be at least partially attributed to the growth of 3,4 polyisoprene units onto the magnesium atom. By combining dialkylmagnesium and trialkylaluminum, a 1,4‐trans stereospecific reversible coordinative chain transfer polymerization of isoprene is reached using the half‐lanthanocene Cp*La(BH4)2(THF)2. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010 相似文献
5.
Francesco De Carlo Carmine Capacchione Vincenzo Schiavo Antonio Proto 《Journal of polymer science. Part A, Polymer chemistry》2006,44(4):1486-1491
The isospecific polymerization of several para‐substituted styrenes was performed in the presence of the catalyst dichloro[1,4‐dithiabutanediyl‐2,2′‐bis(4,6‐di‐tert‐butyl‐phenoxy)]titanium activated by methylaluminoxane. All the polymers were highly regioregular and isotactic with narrow molecular weight distributions. The presence of electron‐donating substituents on the aromatic ring had a positive effect on the catalyst activity, whereas electron‐withdrawing substituents affected the polymerization activity negatively. Binary copolymerizations of the various substituted styrenes showed an inversion of the reactivity with respect to that observed in the homopolymerization. These results suggested that the last monomer unit of the polymer chain coordinated to the metal center, influencing the reactivity of the catalyst with respect to the incoming monomer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1486–1491, 2006 相似文献
6.
Guido Pampaloni Yogesh Patil Anna Maria Raspolli Galletti Stefano Zacchini 《Journal of polymer science. Part A, Polymer chemistry》2011,49(7):1664-1670
The dinuclear [NbCln(OR)(5‐n)]2 (n = 4, R = Et, 1 ; n = 4, R = CH2Ph, 2 ; n = 3, R = Et, 3 ; n = 2, R = Et, 4 ; n = 2, R = , 5 ), and [Nb(OEt)5]2, 6 , and the mononuclear niobium compounds NbCl4[κ2? OCH2CH(R′)OR] (R = Me, R′ = H, 7 ; R = Et, R′ = H, 8 ; R = CH2Cl, R′ = H, 9 ; R = CH2CH2OMe, R′ = H, 10 ; R = R′ = Me, 11 ), NbBr4[κ2? OCH2CH2OMe], 12 , and NbCl3(κ2? OCH2CH2OMe)(κ1? OCH2CH2OMe), 13 , were tested in ethylene polymerization. Optimized reaction conditions included the use of D‐MAO as co‐catalyst and chlorobenzene as solvent at 50 °C. Complex 7 , whose X‐Ray structure is described here for the first time, exhibited the highest activity ever reported for a niobium catalyst in alkene polymerization [151 kgpolymer × molNb?1 × h?1 × bar?1]. Compounds 1 , 3‐5 , 8 , 13 showed activities similar to that of 7 . Linear polyethylenes (characterized by FT‐IR, NMR, GPC, and DSC analyses) with a broad polydispersivity were obtained. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
7.
Miao Hong Guo‐Fan Yang Ying‐Yun Long Shijun Yu Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2013,51(15):3144-3152
A series of novel cyclic olefin copolymers (COCs), including ethylene/tricyclo[4.3.0.12,5]deca‐3‐ene (TDE), ethylene/tricyclo[4.4.0.12,5]undec‐3‐ene (TUE), and ethylene/tricyclo[6.4.0.19,12]tridec‐10‐ene (TTE) copolymers, have been synthesized via effective copolymerizations of ethylene with bulk cyclic olefin comonomers using bis(β‐enaminoketonato) titanium catalysts ( 1a [PhN?C(CH3)CHC(CF3)O]2TiCl2; 1b : [PhN?C(CF3)CHC(Ph)O]2TiCl2). With modified methylaluminoxane as a cocatalyst, both catalysts exhibit high catalytic activities, producing high molecular weight copolymers with high comonomer incorporations and unimodal molecular weight distributions. The microstructures of obtained ethylene/COCs are established by combination of 1H, 13C NMR, 13C DEPT, HSQC 1H? 13C, and 1H? 1H COSY NMR spectra. DSC analyses indicate that the glass transition temperature (Tg) increases with the enhancement of comonomer volume (TDE < TUE < TTE). High Tg value up to 180 °C is easily attained in ethylene/TTE copolymer with the low content of 35.8 mol %. TGA analyses reveal that these copolymers all possess high thermal stability with degradation temperatures (Td) higher than 370 °C in N2 and air. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3144–3152 相似文献
8.
Miao Hong Li Pan Wei‐Ping Ye Dong‐Po Song Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2010,48(8):1764-1772
The copolymerizations of ethylene with cyclic dienes [dicyclopentadiene (DCPD) and 2,5‐norbornadiene (NBD)] using bis(β‐enaminoketonato)titanium complexes [PhN = C(R2)CHC(R1)O]2TiCl2 ( 1a : R1 = CF3, R2 = CH3; 1b : R1 = t‐Bu, R2 = CF3; 1c : R1 = Ph, R2 = CF3) have been investigated. In the presence of modified methylaluminoxane, these complexes exhibited high catalytic activities in the copolymerization of ethylene with DCPD or NBD, affording high molecular weight copolymers with unimodal molecular weight distributions. 1H and 13C‐NMR spectra reveal ethylene/DCPD copolymerizations by catalysts 1a – c proceeds through the enchainment of norbornene ring. Catalysts 1a and 1c showed a tendency to afford alternating copolymers. More noticeably, catalysts 1b and 1c bearing bulky substituents on the ligands promote ethylene/NBD copolymerization without crosslinking, affording the copolymer containing intracyclic double bonds. The NBD incorporation as high as 27.2 mol % has been achieved by catalyst 1c . Moreover, the microstructures of the copolymers were further confirmed by the measurement of reactivity ratios and dyad monomer sequences as well as mean sequence lengths. The intracyclic double bonds of ethylene/DCPD or ethylene/NBD copolymers can be fully converted into polar groups such as epoxy, amine, silane, and hydroxyl groups under mild conditions. Convenient synthesis of hydroxylated polyethylene can be provided for the first time through the ring opening reaction of epoxide. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1764–1772, 2010 相似文献
9.
Toru Wada Toshiaki Taniike Iku Kouzai Shougo Takahashi Minoru Terano 《Macromolecular rapid communications》2009,30(11):887-891
In propylene polymerization with MgCl2‐supported Ziegler‐Natta catalysts, it is known that the reduction of TiCl4 with alkylaluminum generates Ti3+ active species, and at the same time, leads to the growth of TiClx aggregates. In this study, the aggregation states of the Ti species were controlled by altering the Ti content in a TiCl3/MgCl2 model catalyst prepared from a TiCl3 · 3C5H5N complex. It is discovered that all the Ti species become isolated mononuclear with a highly aspecific feature below 0.1 wt.‐% of the Ti content, and that the isolated aspecific Ti species are more efficiently converted into highly isospecific ones by the addition of donors than active sites in aggregated Ti species.
10.
Li‐Peng He Hong‐Liang Mu Bai‐Xiang Li Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2010,48(2):311-319
Novel chromium catalysts based on bidentate phenoxy‐phosphinoyl (HO‐2R1‐4R2‐6(Ph2P?O)C6H2: R1 = R2 = H, 3a ; R1 = tBu, R2 = H, 3b ; R1 = R2 = tBu, 3c ; R1 = R2 = cumyl, 3d ; R1 = anthracenyl, R2 = H, 3e ) and thiophenol‐phosphine (HS‐2R1‐4R2‐6(Ph2P)C6H2: R1 = R2 = H, 4a ; R1 = SiMe3, R2 = H, 4b ) were prepared and characterized. Treatment with modified methyaluminoxane, these catalysts displayed moderate to high‐catalytic activities for ethylene polymerization. The activities of them were higher than those of the corresponding catalysts based on bidentate phenoxy‐phosphine ligands. Both the coordinated donors and the ortho‐substituent of the ligands played an important role in improving catalytic activity. The effects of reaction parameters, such as cocatalyst and Al/Cr molar ratio as well as reaction temperature, on ethylene polymerization behaviors were investigated in detail for two favorable catalytic systems, 3b /CrCl3(thf)3 and 4b /CrCl3(thf)3. Catalyst 4b /CrCl3(thf)3 displayed higher catalytic activity and better temperature tolerance for ethylene polymerization than 3b /CrCl3(thf)3. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 311–319, 2010 相似文献
11.
Ji‐Qian Wu Li Pan San‐Rong Liu Li‐Peng He Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2009,47(14):3573-3582
A series of novel vanadium(III) complexes bearing heteroatom‐containing group‐substituted salicylaldiminato ligands [RN?CH(ArO)]VCl2(THF)2 (Ar = C6H4, R = C3H2NS, 2a ; C7H4NS, 2c ; C7H5N2, 2d ; Ar = C6H2tBu2 (2,4), R = C3H2NS, 2b ) have been synthesized and characterized. Structure of complex 2c was further confirmed by X‐ray crystallographic analysis. The complexes were investigated as the catalysts for ethylene polymerization in the presence of Et2AlCl. Complexes 2a–d exhibited high catalytic activities (up to 22.8 kg polyethylene/mmolV h bar), and affording polymer with unimodal molecular weight distributions at 25–70 °C in the first 5‐min polymerization, whereas produced bimodal molecular weight distribution polymers at 70 °C when polymerization time prolonged to 30 min. The catalyst structure plays an important role in controlling the molecular weight and molecular weight distribution of the resultant polymers produced in 30 min polymerization. In addition, ethylene/hexene copolymerizations with catalysts 2a–d were also explored in the presence of Et2AlCl, which leads to the high molecular weight and unimodal distributions copolymers with high comonomer incorporation. Catalytic activity, comonomer incorporation, and polymer molecular weight can be controlled over a wide range by the variation of catalyst structure and the reaction parameters, such as comonomer feed concentration, polymerization time, and polymerization reaction temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3573–3582, 2009 相似文献
12.
Li‐Peng He Jing‐Yu Liu Li Pan Ji‐Qian Wu Bao‐Chang Xu Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2009,47(3):713-721
A series of amino‐pyrrolide ligands ( 1–4a ) and their derivatives amino‐thiophene ligand ( 5a ), amino‐indole ligand ( 6a ) were prepared. Chromium catalysts, which were generated in situ by mixing the ligands with CrCl3(thf)3 in toluene, were tested for ethylene polymerization. The preliminary screening results revealed that the tridentate amino‐pyrrolide ligands containing soft pendant donor, 3a, 4a /CrCl3(thf)3 systems displayed high catalytic activities towards ethylene polymerization in the presence of modified methyaluminoxane. The electronic and steric factors attached to the ligand backbone significantly affected both the catalyst activity and the polymer molecular weight. Complex 4b was obtained by the reaction of CrCl3(thf)3 with one equivalent of the lithium salts of 4a , which was the most efficient ligand among the tested ones. The effect of polymerization parameters such as cocatalyst concentration, ethylene pressure, reaction temperature, and time on polymerization behavior were investigated in detail. The resulting polymer obtained by 4b display wax‐like and possess linear structure, low molecular weight, and unimodal distribution. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 713–721, 2009 相似文献
13.
Sen‐Wang Zhang Gui‐Bao Zhang Ling‐Pan Lu Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2013,51(4):844-854
A series of novel vanadium(III) complexes bearing tridentate phenoxy‐phosphine [O,P,O] ligands and phosphine oxide‐bridged bisphenolato [O,P?O,O] ligands, which differ in the steric and electronic properties, have been synthesized and characterized. These complexes were characterized by Fourier transform infrared spectroscopy (FTIR) and mass spectra as well as elemental analysis. Single‐crystal X‐ray diffraction revealed that complexes 3c and 4e adopt an octahedral geometry around the vanadium center. In the presence of Et2AlCl as a cocatalyst, these complexes displayed high catalytic activities up to 22.8 kg PE/mmolV.h.bar for ethylene polymerization, and produced high‐molecular‐weight polymers. Introducing additional oxygen atom on phosphorus atom of [O,P,O] ligands has resulted in significant changes on the aspect of steric/electronic effect, which has an impact on polymerization performance. 3c and 4c /Et2AlCl catalytic systems were tolerant to elevated temperature (70 °C) and yielded unimodal polyethylenes, indicating the single‐site behavior of these catalysts. By pretreating with equimolar amounts of alkylaluminums, functional α‐olefin 10‐undecen‐1‐ol can be efficiently incorporated into polyethylene chains. 10‐Undecen‐1‐ol incorporation can easily reach 14.6 mol % under the mild conditions. Other reaction parameters that influenced the polymerization behavior, such as reaction temperature, Al/V (molar ratio), and comonomer concentration, are also examined in detail. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013 相似文献
14.
Jing‐Shan Mu Xin‐Cui Shi Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2011,49(12):2700-2708
Iminopyrrolyl vanadium(III) complexes 2a–b bearing tridentate ligands [C4H3NCH?NC6H4L]VCl2(THF) [L = 2‐P(C6H5)2 ( 2a ), 2‐SMe ( 2b )] and complexes 2c–d with tetradentate ligands [(C4H3NCH?N)2R]VCl(THF) [R = 1,2‐C6H4 ( 2c ), 1,2‐C2H4 ( 2d )] have been synthesized in high yields. With diethylaluminium chloride as a cocatalyst, complexes 2a–d were investigated as efficient catalysts for ethylene polymerization under various reaction conditions, and exhibited high catalytic activity and remarkable thermal stability. With these complexes, high molecular weight polymers with unimodal molecular weight distributions were obtained, indicating that the polymerization reaction took place in a single‐site nature. Ethylene/1‐hexene copolymerizations were also investigated in the presence of Et2AlCl. Both increasing ligand denticity and introducing softer atom into the sidearm of the ligands significantly influenced catalytic activity, comonomer incorporation, and the molecular weights of the resultant polymers, suggesting that both the steric and the electronic effects of the ligands played an important role in adjusting chain propagation and transfer rate. The chain transfer mechanisms involved in the copolymerization process were investigated by carefully analyzing the microstructure of the copolymers. The signals of vinyl, disubstituted and tri‐substituted vinylene double bond end groups were detected in the copolymer obtained by 2a /Et2AlCl system but not in those by 2b–c /Et2AlCl systems, indicating that bulky electron‐donating group, ? P(C6H5)2, may lead to those unusual transfer reactions. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
15.
Giuseppe Leone Aldo Boglia Fabio Bertini Maurizio Canetti Giovanni Ricci 《Journal of polymer science. Part A, Polymer chemistry》2010,48(20):4473-4483
Organo‐modified layered silicates were synthesized and used as inorganic carriers for CoCl2(PtBu2Me)2‐MAO catalyst in the polymerization of 1,3‐butadiene, yielding cis‐1,4‐enriched polybutadiene. The organoclays were prepared by: (i) intercalation of (ar‐vinyl‐benzyl)trimethyl ammonium chloride salt through an ion exchange reaction, and (ii) the edge‐surface grafting by trimethylchlorosilane. The ammonium modifier acts as “spacer” increasing the layer d‐spacing and as “filler” favoring the silylation of the edge‐surface clay hydroxyls. The grafted silane prevents the MAO cocatalyst from reacting with the edge‐OHs, by forcing it to react within the interlayer clay region. MAO lead to methylation of the cobalt complex and carbanion abstraction to give a cobalt‐methyl cation that is stabilized by the MAO anion. The nanoconfined cationic alkylated species insert the butadiene on the Co‐Me bond affording the growth of the polymer chains within the clay layers. The growing of the macromolecular chains fills the interlayer silicate region giving an intercalated polybutadiene rubber nanocomposite. The role of the silicate organo modification on the heterogeneous catalyst structural features, the polymerization behavior and the nanocomposite structures are discussed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010 相似文献
16.
Kyung‐Sun Son Robert M. Waymouth 《Journal of polymer science. Part A, Polymer chemistry》2010,48(7):1579-1585
A series of monocyclopentadienyl titanium complexes containing a pendant amine donor on a Cp group ( A = CpTiCl3, B = CpNTiCl3, C = CpNTiCl2TEMPO, for Cp = C5H5, CpN = C5H4CH2CH2N(CH3)2, and TEMPO = 2,2,6,6‐tetramethylpiperidine‐N‐oxyl) are investigated for styrene homopolymerization and ethylene–styrene (ES) copolymerization. When activated by methylaluminoxane at 70 °C, complexes with the amine group ( B and C ) are active for styrene homopolymerization and afford syndiotactic polystyrene (sPS). The copolymerizations of ethylene and styrene with B and C yield high‐molecular weight ES copolymer, whereas complex A yields mixtures of sPS and polyethylene, revealing the critical role that the pendant amine has on the polymerization behavior of the complexes. Fractionation, NMR, and DSC analyses of the ES copolymers generated from B and C suggest that they contain sPS. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1579–1585, 2010 相似文献
17.
Ying‐Yun Long Yong‐Xia Wang Bai‐Xiang Li Yan‐Guo Li Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2017,55(17):2787-2797
A series of heteroligated (salicylaldiminato)(β‐enaminoketonato)titanium complexes [3‐But‐2‐OC6H3CH = N(C6F5)] [PhN = C(R1)CHC(R2)O]TiCl2 [ 3a : R1 = CF3, R2 = tBu; 3b : R1 = Me, R2 = CF3; 3c : R1 = CF3, R2 = Ph; 3d : R1 = CF3, R2 = C6H4Ph(p ); 3e : R1 = CF3, R2 = C6H4Ph(o ); 3f : R = CF3, R2 = C6H4Cl(p ); 3g : R1 = CF3; R2 = C6H3Cl2(2,5); 3h : R1 = CF3, R2 = C6H4Me(p )] were investigated as catalysts for ethylene (co)polymerization. In the presence of modified methylaluminoxane as a cocatalyst, these complexes showed activities about 50%–1000% and 10%–100% higher than their corresponding bis(β‐enaminoketonato) titanium complexes for ethylene homo‐ and ethylene/1‐hexene copolymerization, respectively. They produced high or moderate molecular weight copolymers with 1‐hexene incorporations about 10%–200% higher than their homoligated counterpart pentafluorinated FI‐Ti complex. Among them, complex 3b displayed the highest activity [2.06 × 106 g/molTi?h], affording copolymers with the highest 1‐hexene incorporations of 34.8 mol% under mild conditions. Moreover, catalyst 3h with electron‐donating group not only exhibited much higher 1‐hexene incorporations (9.0 mol% vs. 3.2 mol%) than pentafluorinated FI‐Ti complex but also generated copolymers with similar narrow molecular weight distributions (M w/M n = 1.20–1.26). When the 1‐hexene concentration in the feed was about 2.0 mol/L and the hexene incorporation of resultant polymer was about 9.0 mol%, a quasi‐living copolymerization behavior could be achieved. 1H and 13C NMR spectroscopic analysis of their resulting copolymers demonstrated the possible copolymerization mechanism, which was related with the chain initiation, monomer insertion style, chain transfer and termination during the polymerization process. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 2787–2797 相似文献
18.
Sukhdeep Kaur Gurmeet Singh Virendra K. Gupta 《Journal of polymer science. Part A, Polymer chemistry》2008,46(22):7299-7309
Ethylene polymerizations were performed using catalyst based on titanium tetrachloride (TiCl4) supported on synthesized poly(methyl acrylate‐co‐1‐octene) (PMO). Three catalysts were synthesized by varying TiCl4/PMO weight ratio in chlorobenzene resulting in incorporation of titanium in different percentage as determined by UV‐vis spectroscopy. The coordination of titanium with the copolymer matrix was confirmed by FTIR studies. The catalysts morphology as observed by SEM was found to be round shaped with even distributions of titanium and chlorine on the surface of catalyst. Their performance was evaluated for atmospheric polymerization of ethylene in n‐hexane using triethylaluminum as cocatalyst. Catalyst with titanium incorporation corresponding to 2.8 wt % showed maximum activity. Polyethylenes obtained were characterized for melting temperature, molecular weight, morphology and microstructure. The polymeric support utilized for TiCl4 was synthesized using activators regenerated by electron transfer (ARGET) Atom Transfer Radical Polymerization (ATRP) of methyl acrylate (MA) and 1‐octene (Oct) with Cu(0)/CuBr2/tris(2‐(dimethylamino)ethyl)amine (Me6TREN) as catalyst and ethyl 2‐bromoisobutyrate (EBriB) as initiator at 80 °C. The copolymer poly(methyl acrylate‐1‐octene; PMO) obtained showed monomodal curve in Gel Permeation Chromatography (GPC) with polydispersity of 1.37 and copolymer composition (1H NMR; FMA) of 0.75. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7299–7309, 2008 相似文献
19.
Li‐Ming Tang Ji‐Qian Wu Yi‐Qun Duan Li Pan Yan‐Guo Li Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2008,46(6):2038-2048
Five novel vanadium(III) complexes [PhN = C(R2)CHC(R1)O]VCl2(THF)2 ( 4a : R1 = Ph, R2 = CF3; 4b : R1 = t‐Bu, R2 = CF3; 4c : R1 = CF3, R2 = CH3; 4d : R1 = Ph, R2 = CH3; 4e : R1 = Ph, R2 = H) have been synthesized and characterized. On activation with Et2AlCl, all the complexes, in the presence of ethyl trichloroacetate (ETA) as a promoter, are highly active precatalysts for ethylene polymerization, and produce high molecular weight and linear polymers. Catalyst activities more than 16.8 kg PE/mmolV h bar and weight‐average molecular weights higher than 173 kg/mol were observed under mild conditions. The copolymerizations of ethylene and norbornene or 1‐hexene with the precatalysts were also explored, which leads to high molecular weight copolymers with high comonomer incorporation. Catalyst activity, comonomer incorporation, and polymer molecular weight as well as polydispersity index can be controlled over a wide range by the variation of precatalyst structure and the reaction parameters such as Al/V molar ratio, comonomer feed concentration, and polymerization temperature. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2038–2048, 2008 相似文献
20.
Elena Colamarco Stefano Milione Cinzia Cuomo Alfonso Grassi 《Macromolecular rapid communications》2004,25(2):450-454
Summary: The bis(imino)pyridyl vanadium(III ) complex [VCl3{2,6‐bis[(2,6‐iPr2C6H3)NC(Me)]2(C5H3N)}] activated with different aluminium cocatalysts (AlEt2Cl, Al2Et3Cl3, MAO) promotes chemoselective 1,4‐polymerization of butadiene with activity values higher than classical vanadium‐chloride‐based catalysts. The polymer structure depends on the nature of the cocatalyst employed. The MAO‐activated complex was also found to be active in ethylene‐butadiene copolymerization, producing copolymers with up to 45 mol‐% of trans‐1,4‐butadiene. Crystalline polyethylene and trans‐1,4‐poly(butadiene) segments were detected in these copolymers by DSC and 13C NMR spectroscopy.