首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
4.
朱纯  曹泽星 《结构化学》2012,(5):645-654
Density functional calculations are used to determine structural and electronic properties of P4,P4O6,P4O10,P20O30 and P20O50 clusters and their protonated derivatives.These oxygen-rich phosphorus oxides are predicted to have relatively high stabilities with respect to their components P4 and O2,and their unsaturated P and end-on O atoms as the proton acceptor can accommodate multiple protons to generate highly positively charged cationic clusters,such as P20O30H1010+.Calculations indicate that P4O6 and P20O30 have higher reactivity toward the proton capture than the P4,P4O10 and P20O50 clusters,and the most stable protonated clusters among these different series of cationic clusters are P4H22+,P4O6H22+,P4O10H33+,P20O30H44+ and P20O50H44+,respectively.The cage skeleton of the phosphorus oxide clusters shows high stability for the consecutive protonation,and the unsymmetrical stretching of the skeletal P-O bond and the wagging mode of P-H coupled with the P-O bond stretching have strong adsorptions.These computational findings are useful for further experimental and theoretical studies of novel phosphorus oxide clusters and their highly positively charged derivatives.  相似文献   

5.
Sulfonamides of primary amine bearing an aromatic ring at γ-position were treated with (diacetoxyiodo)arene and iodine under irradiation conditions with a tungsten lamp to give the corresponding 1,2,3,4-tetrahydroquinoline derivatives in moderate to good yields.  相似文献   

6.
7.
8.
9.
Reaction of an in situ generated phosphinidene complex [PhPW(CO)(5)] with the aromatic azulene and guaiazulene leads to unexpected 1,4-adducts of the seven-membered ring and to C--H bond insertion of the five-membered ring. A DFT analysis suggests that the reaction is initiated by formation of a eta(1)-complex between the phosphinidene and the five-membered ring of the aromatic substrate. Four conformations of this complex were identified. Two convert without barrier to the slightly more stable syn- and anti-1,2-adducts. These undergo pericyclic 1,7-sigmatropic rearrangements with remarkably low barriers to give 1,4-adducts, with an inverted configuration at the phosphorus center. An X-ray crystal structure is presented for one of the 1,4-adducts of guaiazulene. The other two eta(1)-complexes insert with modest barriers into a C--H bond of the five-membered ring.  相似文献   

10.
The abstraction of the Lewis acid from [W(CO)(5)(PH(2)BH(2)NMe(3))] (1) by an excess of P(OMe(3))(3) leads to the quantitative formation of the first Lewis base stabilized monomeric parent compound of phosphanylborane [H(2)PBH(2)NMe(3)] 2. Density functional theory (DFT) calculations have shown a low energetic difference between the crystallographically determined antiperiplanar arrangement of the lone pair and the trimethylamine group relative to the P-B core and the synperiplanar conformation. Subsequent reactions with the main-group Lewis acid BH(3) as well as with an [Fe(CO)(4)] unit as a transition-metal Lewis acid led to the formation of [(BH(3))PH(2)BH(2)NMe(3)] (3), containing a central H(3)B-PH(2)-BH(2) unit, and [Fe(CO)(4)(PH(2)BH(2)NMe(3))] (4), respectively. In oxidation processes with O(2), Me(3)NO, elemental sulfur, and selenium, the boranylphosphine chalcogenides [H(2)P(Q)BH(2)NMe(3)] (Q = S 5 b; Se 5 c) as well as the novel boranyl phosphonic acid [(HO)(2)P(O)BH(2)NMe(3)] (6 a) are formed. All products have been characterized by spectroscopic as well as by single-crystal X-ray structure analysis.  相似文献   

11.
The (31)P MAS NMR spectrum of Hittorf's phosphorus has been measured and assigned to the 21 crystallographically distinct phosphorus atoms based on two-dimensional dipolar correlation spectroscopies. Application of such 2D techniques to phosphorus-based networks is particularly challenging owing to the wide chemical shift dispersions, rapid irreversible decay of transverse magnetization, and extremely slow spin-lattice relaxation in these systems. Nevertheless, a complete assignment was possible by using the combination of correlated spectroscopy (COSY) and radiofrequency-driven dipolar recoupling (RFDR). The assignment is supported further by DFT-based ab initio chemical shift calculations using a cluster-model approach, which gives good agreement between experimental and calculated chemical shift values. The (31)P chemical shifts appear to be strongly correlated with the average P-P bond lengths within the P(P(1/3))(3) coordination environments, whereas no clear dependence on average P-P-P bond angles can be detected. Calculations of localized Kohn-Sham orbitals reveal that this bond-length dependence is reflected in energy variations in the corresponding localized p-p-σ orbitals influencing the paramagnetic deshielding contribution in Ramsey's equation. In contrast, the contributions of the lone pairs to shielding differences are small and/or do not vary in a systematic manner for the different crystallographically distinct phosphorus sites. The combined spectroscopic and quantum chemical approach applied here and the increased theoretical understanding of (31)P chemical shifts will facilitate the structural elucidation of other phosphorus-based clusters and networks.  相似文献   

12.
13.
We derive the structural principles of polyhedral allotropes of phosphorus, introducing three distinct families of black phosphorus nanostructures. The predicted tetrahedral, octahedral, and icosahedral phosphorus cages can also be considered as phosphorus fullerenes. Phosphorus cages up to P888 are systematically investigated by quantum chemical methods, and their thermodynamic stabilities are compared with the experimentally known allotropic forms of phosphorus. The tetrahedral cages are thermodynamically favored over the octahedral and icosahedral structures, although large octahedral structures become nearly as stable as the tetrahedral ones. The stability trends of the studied polyhedral families can be rationalized on the basis of their structural characteristics. The phosphorus polyhedra can be further stabilized by fitting smaller structures inside larger ones, resulting in multilayered, bulk‐like cages. The synthesis of the predicted black phosphorus nanostructures is suggested to be viable from the thermodynamic point of view, and several approaches for their experimental preparation can be envisaged.  相似文献   

14.
The phosphatetrasilatricyclo[2.1.0.02,5]pentane cage compound was synthesized by the reaction of the tetrasilacyclobutadiene dianion dipotassium salt precursor with PCl3. The structure, bonding nature, and mechanism of formation of the title compound were studied both experimentally (NMR, X-ray) and computationally (DFT).  相似文献   

15.
Activation of dinitrogen (N2, 78 %) and dioxygen (O2, 21 %) has fascinated chemists and biochemists for decades. The industrial conversion of N2 into ammonia requires extremely high temperatures and pressures. Herein we report the first example of N2 and O2 cleavage by a uranium complex, [N(CH2CH2NPiPr2)3U]2(TMEDA), under ambient conditions without an external reducing agent. The N2 triple bond breaking implies a UIII–PIII six‐electron reduction. The hydrolysis of the N2 reduction product allows the formation of ammonia or nitrogen‐containing organic compounds. The interaction between UIII and PIII in this molecule allows an eight‐electron reduction of two O2 molecules. This study establishes that the combination of uranium and a low‐valent nonmetal is a promising strategy to achieve a full N2 and O2 cleavage under ambient conditions, which may aid the design of new systems for small molecules activation.  相似文献   

16.
Contrary to the classical silylene dimerization leading to a disilene structure, phosphine stabilized hydro‐ and chloro‐silylenes ( 2 a , b ) undergo an unique dimerization via silylene insertion into Si? X σ‐bonds (X=H, Cl), which is reversible at room temperature. DFT calculations indicate that the insertion reaction proceeds in one step in a concerted manner.  相似文献   

17.
18.
Abstract

Tricoordinate phosphorus compounds react with a wide variety of double bonds through addition reactions. The dipolar and cyclic products formed are important intermediates in organophosphorus chemistry. We investigated the reactivity between phosphorus triamide 1 and nitrosoarenes and 2-acylpyridines. For sterically congested substrates, the formation of σ5 Aroyan, C. E.; Dermenci, A.; Miller, S. J. The Rauhut–Currier Reaction: A History and Its Synthetic Application. Tetrahedron 2009, 65, 40694084. DOI: 10.1016/j.tet.2009.02.066.[Crossref], [Web of Science ®] [Google Scholar]5-phosphorus products is observed. DFT calculations indicate this product is formed through a concerted [4?+?1] mechanism. For less sterically congested substrates, products are observed arising from cleavage of the N?=?O or C?=?O bond with formation of a terminal P?=?O bond and aryl nitrene or carbene migration into a P–N bond of the phosphorus triamide core. DFT calculations are consistent with an initial [2?+?1] addition to phosphorus followed by formal carbene/nitrene migration in these cases.  相似文献   

19.
The reaction of [{(CO)5W}PRH2] (R=H, Ph) with H3Al ? NR3 (R=Et, Me) leads to the formation of four‐membered heterocyclic compounds [({(CO)5W}P(H)AlH ? NEt3)2] and [({(CO)5W}PhPAlH ? NMe3)2]. Upon dissolving the solid compounds, fast equilibria between the isomers are observed on the NMR timescale. Further insight into the stability and reactivity of the isomers was gained by applying theoretical methods. DFT calculations predict that hydrogen elimination in the case of [({(CO)5W}PhPAlH ? NMe3)2] may be reversible.  相似文献   

20.
A phosphinine-borane adduct of a Me3Si-functionalized phosphinine and the Lewis acid B(C6F5)3 has been synthesized and characterized crystallographically for the first time. The reaction strongly depends on the nature of the substituents in the α-position of the phosphorus heterocycle. In contrast, the reaction of B2H6 with various substituted phosphinines leads to an equilibrium between the starting materials and the phosphinine–borane adducts that is determined by the Lewis basicity of the phosphinine. The novel phosphinine borane adduct ( 6 -B(C6F5)3) shows rapid and facile insertion and [4+2] cycloaddition reactivity towards phenylacetylene. A hitherto unknown dihydro-1-phosphabarrelene is formed with styrene. The reaction with an ester provides a new, facile and selective route to 1-R-phosphininium salts. These salts then undergo a [4+2] cycloaddition in the presence of Me3Si−C≡CH and styrene to cleanly form unprecedented derivatives of 1-R-phosphabarrelenium salts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号