首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary: The annealing and melting behavior of poly[(R)‐3‐hydroxybutyrate] (P(3HB)) single crystals were followed in real time by synchrotron small‐ (SAXS) and wide‐angle X‐ray scattering (WAXS) measurements. The real‐time SAXS measurements revealed that the P(3HB) single crystal exhibits a discontinuous increase of lamellar thickness during heating. The structural changes as observed by SAXS and WAXS were in response to the thermal properties of single crystals characterized by differential scanning calorimetry.

A series of two‐dimensional small‐angle X‐ray scattering patterns of P(3HB) single crystal mats during the lamellar thickening process.  相似文献   


2.
Structural studies and morphological features of a new family of linear, aliphatic even–even, X 34‐nylons, with X = 2, 4, 6, 8, 10, and 12, are investigated with X‐ray diffraction and electron microscopy. Solution‐grown crystals were obtained by isothermal crystallization from N,N‐dimethylformamide solutions. The thickness of lamellar‐like crystals was orders of magnitude less than the chain lengths of the polymer samples used, implying that the chains fold to form chain‐folded lamellae. The results bear a close resemblance, with the noticeable exception of 2 34‐nylon, to those reported for nylon 6 6 and other even–even nylon chain‐folded lamellar crystals. The basic structure of the straight‐stem lamellar core is similar to that of the classic nylon 6 6 triclinic α structure, and the chains tilt ≈42° relative to the lamellar normal. In the case of 2 34‐nylon, the structure resembles the 2 Y nylon series, and the chain tilt angle reduces to 36.6°. These combined results suggest that, even with a relatively low frequency of amide units along the backbone of these molecules, hydrogen bonding is still the dominant element in controlling the behavior, structure, and properties of these polymers. In addition, gels were prepared in concentrated sulfuric acid, and gel‐spun fibers were studied using X‐ray diffraction. The data are interpreted in terms of a modified nylon triclinic α structure that bears a resemblance to the structure of even–even nylons at elevated temperatures. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2685–2692, 2002  相似文献   

3.
Summary: In a low‐molecular‐weight polyethylene‐block‐poly(ethylene oxide) (PE‐b‐PEO) diblock copolymer, two pathway‐dependent melting processes were observed: Upon slow heating, the PE lamellar crystals melted at ≈97 °C into a disordered state. However, when the temperature rapidly jumped to above the melting point (e.g., 100 °C), the PE lamellar crystals transformed directly into an ordered lamellar melt, followed by an isothermal conversion into a disordered melt. This isothermal order‐to‐disorder transition was explained by superheating of the PE crystals using a GT diagram.

A schematic GT diagram explaining the pathway‐dependent double melting for a crystalline polyethylene‐block‐poly(ethylene oxide) copolymer.  相似文献   


4.
The isothermal crystallization and subsequent melting process in semicrystalline poly(4‐methyl‐1‐pentene) were investigated via temperature‐dependent small‐ and wide‐angle X‐ray scattering and Flash DSC techniques. In a phase diagram of inversed crystalline lamellar thickness and temperature, the crystallization and melting lines can be described by two linear dependencies of different slopes and different limiting temperatures at infinite lamellar thickness. Upon subsequent heating, recrystallization lines with different slopes were observed for samples with different lamellar thickness, indicating changes in surface free energy difference between stabilized crystallites and mesomorphic phase. The surface free energy of native crystallites with extended‐chain conformation decreased with increasing lamellar thickness due to a more ordered surface region and less chain ends which changes cooperatively with mesomorphic phase. The surface free energy of stabilized crystallites remained unchanged for all lamellar thickness. Therefore, the recrystallization lines with different slopes are consequences of changes in surface free energy of mesomorphic phase. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 219–224  相似文献   

5.
Summary: Solution‐grown lamellar crystals of poly(p‐dioxanone) (PPDX) have been crystallized isothermally from butane‐1,4‐diol at 100 °C. The crystal structure of PPDX has been determined by interpretation of X‐ray fiber diagrams of PPDX fibers and electron diffraction diagrams of lozenge‐shaped chain‐folder lamellar crystals. The unit cell of PPDX is orthorhombic with space group P212121 and parameters: a = 0.970 nm, b = 0.742 nm, and c (chain axis) = 0.682 nm. There are two chains per unit cell, which exist in an antiparallel arrangement.

Transmission electron micrograph of PPDX chain‐folded lamellar crystals obtained by isothermal crystallization and its electron diffraction diagram.  相似文献   


6.
Poly(4‐methyl‐1‐pentene) (PMP) membranes were modified through isothermal annealing to investigate the change of their crystalline structure and rigid and mobile amorphous fractions (RAF and MAF), assuming a three‐phase model, affected the gas transport behavior. The crystalline structure was characterized by wide‐angle X‐ray diffraction (WAXD) and small‐angle X‐ray scattering (SAXS) techniques, and the free volume properties were analyzed by positron annihilation lifetime spectroscopy. Compared with the pristine membrane, the annealed membranes show higher crystallinity; the crystals undergo partial structural change from form III to form I. The lamellar crystal thickness, rigid amorphous fraction thickness, and long period in the lamellar stacks increase with crystallinity. The annealed PMP membranes exhibit higher permeability due to the increase in larger size free volumes in MAF and higher selectivity due to the increase in smaller size free volumes in RAF, respectively. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2368–2376  相似文献   

7.
A structural comparison of three different crystalline forms of poly(β‐propiolactone) (PPL) was carried out by wide‐angle X‐ray diffraction, Fourier‐transform infrared spectroscopy, and differential scanning calorimetry. The α‐form in a hot‐drawn and annealed film represents a 21 helix conformation. The β‐form in a cold‐drawn and annealed film represents a planar zigzag conformation. The γ‐form in an oriented sedimented mat of solution‐grown chain‐folded lamellar crystals also implies a planar zigzag conformation. The solution‐cast film depicts similar outlines with the γ‐form in lamellar crystals in all the experimental measurements, suggesting that the molecular chain in the solution‐cast film has a planar zigzag conformation. While elongation at break decreased, tensile strength and Young's modulus increased with an increase in the crystallinity, independent of the crystalline forms. The influence of the enzymatic degradation of these crystal structures has been investigated by using an extracellular PHB depolymerase purified from Ralstonia pickettii T1. The rate of degradation was in the order of β‐form > α‐form > solution‐cast (γ‐form) film, and the different surface morphologies after partial enzymatic degradation were observed in scanning electron micrographs. It is suggested that the crystal structure is one of the important factors for determining the rate of degradation together with crystallinity.

Enzymatic degradation profiles of poly(β‐propiolactone) films.  相似文献   


8.
The crystal structure of the title compound, C38H32, presents a novel framework that combines the functionalities of a 1,6‐diarene‐substituted 1,2‐dihydro­naphthalene (DHN) with a 1,4‐distyrylbenzene (DSB) to form a crossed bis‐diarene. The lamellar crystal structure is held together by arene–arene inter­actions. While the orientations of the phenyl rings of the DSB units alternate within both the R and the S substructures, the homochiral substructures feature opposing polarity along the long axes of the DHN‐based diarenes.  相似文献   

9.
The fact that molecular crystals exist as different polymorphic modifications and the identification of as many polymorphs as possible are important considerations for the pharmaceutic industry. The molecule of N‐benzyl‐4‐hydroxy‐1‐methyl‐2,2‐dioxo‐1H‐2λ6,1‐benzothiazine‐3‐carboxamide, C17H16N2O4S, does not contain a stereogenic atom, but intramolecular hydrogen‐bonding interactions engender enantiomeric chiral conformations as a labile racemic mixture. The title compound crystallized in a solvent‐dependent single chiral conformation within one of two conformationally polymorphic P212121 orthorhombic chiral crystals (denoted forms A and B). Each of these pseudo‐enantiomorphic crystals contains one of two pseudo‐enantiomeric diastereomers. Form A was obtained from methylene chloride and form B can be crystallized from N,N‐dimethylformamide, ethanol, ethyl acetate or xylene. Pharmacological studies with solid–particulate suspensions have shown that crystalline form A exhibits an almost fourfold higher antinociceptive activity compared to form B.  相似文献   

10.
This study of 3‐(5‐phenyl‐1,3,4‐oxadiazol‐2‐yl)‐2H‐chromen‐2‐one, C17H10N2O3, 1 , and 3‐[5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazol‐2‐yl]‐2H‐chromen‐2‐one, C16H9N3O3, 2 , was performed on the assumption of the potential anticancer activity of the compounds. Three polymorphic structures for 1 and two polymorphic structures for 2 have been studied thoroughly. The strongest intermolecular interaction is stacking of the `head‐to‐head' type in all the studied crystals. The polymorphic structures of 1 differ with respect to the intermolecular interactions between stacked columns. Two of the polymorphs have a columnar or double columnar type of crystal organization, while the third polymorphic structure can be classified as columnar‐layered. The difference between the two structures of 2 is less pronounced. Both crystals can be considered as having very similar arrangements of neighbouring columns. The formation of polymorphic modifications is caused by a subtle balance of very weak intermolecular interactions and packing differences can be identified only using an analysis based on a study of the pairwise interaction energies.  相似文献   

11.
A photochromic diarylethene, 1,2‐bis(5‐phenyl‐2‐propyl‐3‐thienyl)perfluorocyclopentene ( 1a ), was found to have two polymorphic crystal forms, α‐ and β‐crystals. From X‐ray crystallographic analysis, the space groups of α‐ and β‐crystals were determined to be P21/c and C2/c, respectively. The difference between two crystal forms is ascribed to the orientation of two of four molecules in the unit cell. The thermodynamic phase transition from α‐ to β‐forms occurred via a crystal‐to‐crystal process, as confirmed by differential scanning calorimetry measurements, optical microscopic observations in the reflection mode and under crossed Nicols, and powder X‐ray diffraction measurements. The movement of the molecules in the crystal was evaluated by analyzing the change of face indices before and after the phase transition.  相似文献   

12.
The effect of casting solvent on the morphology of sulfonated polystyrene‐block‐poly(ethylene‐ran‐butylene)‐block‐polystyrene (SSEBS) was investigated using transmission electron microscopy and small‐angle X‐ray scattering. Proton conductivities and methanol permeabilities were measured and the related impact on morphological changes is discussed. SSEBS is transformed from a well‐ordered lamellar to a disordered structure as the concentration of MeOH in MeOH/THF mixtures increases.  相似文献   

13.
The structural changes of two linear polyethylenes, LPEs, with different molar mass and of two homogeneous copolymers of ethylene and 1‐octene with comparable comonomer content but different molar mass were monitored during heating at 10 °C per minute using synchrotron radiation SAXS. Two sets of samples, cooled at 0.1 °C per minute and quenched in liquid nitrogen, respectively, were studied. All LPEs display surface melting between room temperature and the end melting temperature, whereas complete melting, according to lamellar thickness, only occurs at the highest temperatures where DSC displays a pronounced melting peak. There is recrystallization followed by isothermal lamellar thickening if annealing steps are inserted. The lamellar crystals of slowly cooled homogeneous copolymers melt in the reverse order of their formation, that is, crystals melt according to their thickness. Quenching creates unstable crystals through the cocrystallization of ethylene sequences with different length. These crystals repeatedly melt and co‐recrystallize during heating. The exothermic heat due to recrystallization partially compensates the endothermic heat due to melting resulting in a narrow overall DSC melting peak with its maximum at a higher temperature than the melting peak of slowly cooled copolymers. With increasing temperature, the crystallinity of quenched copolymers overtakes the one of slowly cooled samples due to co‐recrystallization by which an overcrowding of leaving chains at the crystal surfaces is avoided. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1975–1991, 2000  相似文献   

14.
Poly(δ‐valerolactone) (PVL) crystals in the form of chain‐folded lamellae were prepared by isothermal crystallization from a 2‐methylbutane‐2‐ol solution. Wide‐angle and small‐angle X‐ray diffraction data, obtained from PVL lamellae sedimented to form oriented mats, were supplemented with morphological and structural data from electron microscopy, both imaging and diffraction. The diffraction signals index on an orthorhombic unit cell with the parameters a = 0.747 ± 0.002 nm, b = 0.502 ± 0.002 nm, and c (chain axis) = 0.742 ± 0.002 nm. Similar unit cell parameters were obtained from crystals grown from 1‐octanol and also from drawn melt‐pressed films. The evidence supports a model containing two antiparallel chain segments in the unit cell. The c value of 0.742 nm is appropriate for an all‐trans or onefold helical backbone conformation for the straight stems. Possible slight perturbations at the ester units from the all‐trans backbone conformation are discussed. Computerized modeling was used to optimize the adjacent‐reentry folded structure. The setting angles, with respect to the a axis, are ±58° for the corner and center chains. The lamellae are 7.26 ± 0.05 nm thick, and the chains run orthogonal to the lamellar surface. The chains fold in the diagonal (110) and (11¯0) planes in an alternating fashion. The X‐ray diffraction data suggest that a proportion of adjacent paired antiparallel entities, or hairpin units, are c‐axis‐sheared, and a relationship to the results obtained from drawn films is discussed. A brief comparison is also made with related polymer structures. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2622–2634, 2001  相似文献   

15.
Single crystals of two liquid crystal compounds, 5‐{[4′‐(((pentyl)oxy)‐4‐biphenylyl)carbonyl]oxy}‐1‐pentyne (A3EO5) and 5‐{[(4′‐nonyloxy‐4‐biphenylyl)carbonyl]oxy}‐1‐pentyne (A3EO9), have been prepared by solution growth technique. The morphologies and structures of A3EO5 and A3EO9 crystals were investigated by wide angle X‐ray diffraction (WXRD), atom force microscope (AFM) and transmission electron microscope (TEM). In contrast to the same series of compounds which have a longer alkyl tail, 5‐{[(4′‐heptoxy‐4‐biphenylyl)carbonyl]oxy}‐1‐pentyne (A3EO7), 5‐{[(4′‐heptoxy‐4‐biphenylyl)oxy]carbonyl}‐1‐pentyne (A3E′O7) and A3EO9, A3EO5 shows strikingly different crystalline behavior. The former three compounds have only one crystal form, whereas A3EO5 exhibits polymorphism. Specifically, A3EO5 crystals grown from toluene solution show two crystal forms. The first one is crystal I which adopts a monoclinic P112/m space group with unit cell parameters of a?5.79 Å, b?8.34 Å, c?43.92 Å, γ?96°, and the other one is crystal II which adopts a monoclinic P112 space group with unit cell parameters of a?5.55 Å, b?7.38 Å, c?31.75 Å, γ?94°. When using dioxane as the solvent to grow A3EO5 crystal, we can selectively obtain crystal I. A3EO5 melt‐grown crystals also have two crystal forms which derive from crystal I and crystal II, respectively. The different crystalline behavior of the compounds should correlate with their different electron dipole moment resulting from the different length of alkyl tail.  相似文献   

16.
Enzymatic degradation behavior of a lamella of single crystals of poly(R)‐3‐hydroxybutyrate (P(3HB)) with an extracellular polyhydroxybutyrate (PHB) depolymerase purified from Alcaligenes faecalis T1 has been investigated by atomic force microscopy (AFM) in order to obtain further information for the chain packing state of P(3HB) in a lamellar single crystal. Two kinds of P(3HB) single crystals with different molecular weights, denoted respectively as H‐ and L‐P(3HB) for high and low molecular weights, respectively, were prepared. The enzymatic treatment was conducted for P(3HB) single crystals adsorbed on a surface of highly ordered pyrolytic graphite. The enzymatic degradation of both P(3HB) single crystals generates several crevices crosswise across the crystal at an early stage. Subsequently, the enzymatic degradation yields numbers of cracks lengthwise along the crystal. In addition to these common features, the interval between cracks crosswise across a lamella in H‐P(3HB) single crystal is longer than that in L‐P(3HB) single crystal, and each crack has V‐shaped and rectangular shaped morphology for H‐ and L‐P(3HB) single crystals, respectively. Based on these results, it is concluded that a lamella of P(3HB) single crystal has straight degradation pathways, that may correspond to a switchboard region, along the long axis of the crystal, independent of molecular weight of P(3HB) samples, and that a H‐P(3HB) single crystal has broader degradation pathways with longer intervals crosswise across the crystal than a L‐P(3HB) single crystal.  相似文献   

17.
We here reported the dual melting behaviors with a large temperature difference more than 50 °C without discernible recrystallization endothermic peak in isomorphous poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (P(HB‐co‐HV)) with a high HV content of 36.2 mol %, and the structure evolution upon heating was monitored by in situ synchrotron wide‐angle X‐ray diffraction/small‐angle X‐ray scattering (WAXD/SAXS) to unveil the essence of such double endothermic phenomena. It illustrated that the thinner lamellae with the larger unit cell and the thicker crystals having the smaller unit cell were melted around the first low and second high melting ranges, respectively. By analyzing in situ WAXD/SAXS data, and then coupling the features of melting behavior, the evolution of the parameters of both crystal unit cell and lamellar crystals, we proposed that the thinner unstable lamellae possess a uniform structure with HV units total inclusion, and the thicker stable lamellae reflect the sandwich structure with HV units partial inclusion. It further affirmed that the thicker sandwich and thinner uniform lamellae formed during the cooling and subsequent isothermal crystallization processes, respectively. These findings fully verify that it is the change of structure of lamellae rather than the melting/recrystallization that is responsible for double melting peaks of isomorphous P(HB‐co‐36.2%HV), and enhance our understanding upon multiple endothermic behaviors of polymers. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1453–1461  相似文献   

18.
Self‐assembly of poly(2‐vinylpyridine)‐block‐poly(ϵ‐caprolactone) (P2VP‐b‐PCL) diblock copolymer in the presence of a selective solvent is investigated by transmission electron microscopy and atomic force microscopy. Addition of water into a P2VP‐b‐PCL solution in N,N‐dimethylformamide at 20 °C produces elongated truncated lozenge shaped single crystals of uniform size and shape in large quantities. The single crystals are composed of PCL single‐crystal layer sandwiched between two P2VP layers tethered on the top and bottom basal surfaces. The formation of the single crystals is found to depend on the temperature. These findings provide a facile approach to the preparation of uniform single crystals in large quantities.

  相似文献   


19.
Derivatives of 4‐hydroxypyrimidine are an important class of biomolecules. These compounds can undergo keto–enol tautomerization in solution, though a search of the Cambridge Structural Database shows a strong bias toward the 3H‐keto tautomer in the solid state. Recrystallization of 2‐amino‐5,6‐dimethyl‐4‐hydroxypyrimidine, C6H9N3O, from aqueous solution yielded triclinic crystals of the 1H‐keto tautomer, denoted form (I). Though not apparent in the X‐ray data, the IR spectrum suggests that small amounts of the 4‐hydroxy tautomer are also present in the crystal. Monoclinic crystals of form (II), comprised of a 1:1 ratio of both the 1H‐keto and the 3H‐keto tautomers, were obtained from aqueous solutions containing uric acid. Forms (I) and (II) exhibit one‐dimensional and three‐dimensional hydrogen‐bonding motifs, respectively.  相似文献   

20.
On crystallization from CHCl3, CCl4, CH2ClCH2Cl and CHCl2CHCl2, 6‐chloro‐5‐hydroxy‐2‐pyridone, C5H4ClNO2, (I), undergoes a tautomeric rearrangement to 6‐chloro‐2,5‐dihydroxypyridine, (II). The resulting crystals, viz. 6‐chloro‐2,5‐dihydroxypyridine chloroform 0.125‐solvate, C5H4ClNO2·0.125CHCl3, (IIa), 6‐chloro‐2,5‐dihydroxypyridine carbon tetrachloride 0.125‐solvate, C5H4ClNO2.·0.125CCl4, (IIb), 6‐chloro‐2,5‐dihydroxypyridine 1,2‐dichloroethane solvate, C5H4ClNO2·C2H4Cl2, (IIc), and 6‐chloro‐2,5‐dihydroxypyridine 1,1,2,2‐tetrachloroethane solvate, C5H4ClNO2·C2H2Cl4, (IId), have I41/a symmetry, and incorporate extensively disordered solvent in channels that run the length of the c axis. Upon gentle heating to 378 K in vacuo, these crystals sublime to form solvent‐free crystals with P21/n symmetry that are exclusively the pyridone tautomer, (I). In these sublimed pyridone crystals, inversion‐related molecules form R22(8) dimers via pairs of N—H...O hydrogen bonds. The dimers are linked by O—H...O hydrogen bonds into R46(28) motifs, which join to form pleated sheets that stack along the a axis. In the channel‐containing pyridine solvate crystals, viz. (IIa)–(IId), two independent host molecules form an R22(8) dimer via a pair of O—H...N hydrogen bonds. One molecule is further linked by O—H...O hydrogen bonds to two 41 screw‐related equivalents to form a helical motif parallel to the c axis. The other independent molecule is O—H...O hydrogen bonded to two related equivalents to form tetrameric R44(28) rings. The dimers are π–π stacked with inversion‐related dimers, which in turn stack the R44(28) rings along c to form continuous solvent‐accessible channels. CHCl3, CCl4, CH2ClCH2Cl and CHCl2CHCl2 solvent molecules are able to occupy these channels but are disordered by virtue of the site symmetry within the channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号