首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel core‐shell‐structured carboxylated‐styrene butadiene rubber (XSBR)‐functionalized nanodiamond (ND‐XSBR) was synthesized and characterized. Epoxy (EP) nanocomposites toughened by pristine ND and ND‐XSBR were investigated and compared. The ND‐XSBR‐reinforced nanocomposite exhibited mechanical properties superior to those of the one filled by pristine ND. At a low‐filler loading, the ND‐XSBR exhibited an impressive toughening effect. The maximum flexural strength was shown when the filler loading was as low as 0.1 wt % for the EP/ND‐XSBR nanocomposite. Furthermore, enhanced fracture toughness and fracture energy were shown by surface functionalization, representing enhanced compatibility between the ND‐XSBR and EP matrix. The glass transition temperature (Tg) and storage modulus of the nanocomposites were studied, and the EP/ND‐XSBR0.1 nanocomposite exhibited the highest Tg owing to the stronger interfacial interaction. The EP/ND‐XSBR0.2 exhibited higher storage modulus and Tg than the EP/ND0.2, because the higher interfacial interaction can restrict the molecular mobility of the EP by the functionalized ND‐XSBR. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1890–1898  相似文献   

2.
In this study, the effect of water addition on cure kinetics in an epoxy‐amine thermoset was investigated. Near FTIR spectra demonstrated that a small amount of water addition significantly accelerated the cure reaction in terms of epoxide conversion, with water acting as a catalyst for the reaction. Use of a modified mechanistic model allowed direct comparison of the effect of hydroxyl groups generated from water addition to those generated from the polymer chain. The comparison of those kinetic parameters shows that the two effects are very close, in which difference in the logarithmic value of the reaction constant is less than one order of magnitude over all the reaction conditions. The kinetic study also confirmed a strong negative substitution effect for this system. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
The reticulation process of an epoxy resin using an amine as a cure agent was studied at different temperatures and concentrations of the cure agent with dynamic mechanical thermal analysis. The study was performed under both isothermal and nonisothermal conditions, and a temperature–time–transformation diagram was obtained. The measurements from the two modes gave similar results, although the nonisothermal mode required fewer experiments. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1965–1977, 2003  相似文献   

4.
Glass transition temperatures (Tg) of nonstoichiometric epoxy-amine networks based on the diglycidylether of bisphenol A (DGEBA), are analyzed in terms of the network structure. In most cases reasonable predictions of Tg can be made using an empirical equation reported by L. E. Nielsen together with the experimental Tg value of the stoichiometric network and statistical calculations of the concentration of elastic chains. It is stated that in these rigid networks the concentration of elastic chains is the main structural factor associated to the variations of Tg with stoichiometry. For flexible networks based on the diglycidylether of butanediol (DGEBD), the effect of elastic chains on the Tg value is much less significant.  相似文献   

5.
Hyperstar polymers (HSPs) with hyperbranched aromatic polyester core and arms consisting of block copolymers of poly(methyl methacrylate) and poly(hydroxyethyl methacrylate) have been used as polymeric modifiers in cycloaliphatic epoxy‐anhydride formulations catalyzed with tertiary amines, with the purpose of enhancing the impact strength of the resulting materials without compromising other thermal and mechanical properties.> In this work, the effect of these polymeric modifiers on the curing kinetics, processing, thermal‐mechanical properties and thermal stability has been studied using thermal analysis techniques such as DSC, TMA, DMA, and TGA. The morphology of the cured materials has been analyzed with SEM. The curing kinetics has been analyzed by isoconversional procedures and phenomenological kinetic models taking into account the vitrification during curing, and the degradation kinetics has been analyzed by means of isoconversional procedures, summarizing the results in a time‐temperature‐transformation (TTT) diagram. The results show that HSPs participate in the crosslinking process due to the presence of reactive groups, without compromising significantly their thermal‐mechanical properties. The modified materials show a potential toughness enhancement produced by the formation of a nano‐grained morphology. The TTT diagram is shown to be a useful tool for the optimization of the curing schedule in terms of curing completion and safe processing window, as well as for defining storage stability conditions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1227–1242  相似文献   

6.
A bifunctional cyclic five‐membered dithiocarbonate (DTC), having a bisphenol A structure, was found to be an effective accelerator for a epoxy–amine curing system comprised of bisphenol A diglycidyl ether and amine‐terminated polypropylene glycol. The acceleration effect was evaluated by monitoring the time‐dependence of the storage modulus of the reaction mixture with a dynamic mechanical analyzer. The reactions involved in the curing system were investigated in detail by performing a series of model reactions using the corresponding monofunctional monomers. This investigation revealed that (1) DTC reacted with amine rapidly, (2) the reaction afforded the corresponding adduct having a thiourethane and thiol moieties, and (3) the thiol reacted rapidly with epoxide. The thiourethane moiety incorporated into the resulting adduct effectively catalyzed the reaction of epoxide and amine, and this catalysis was the predominant mechanism for the acceleration effect arisen by the addition of DTC. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4606–4611, 2007  相似文献   

7.
Epoxy‐functionalized polystyrene/silica core–shell composite nanoparticles were prepared by the postaddition of glycidyl methacrylate (GMA) via emulsion polymerization. The outermost shell of obtained multilayered core–shell particles was made up of poly(glycidyl methacrylate) (PGMA). A semicontinuous process involving the dropwise addition of GMA was used to avoid demulsification of the emulsion system. The amount of grafted PGMA was quantified by Fourier transform infrared spectroscopy and was altered in a wide range (1–50 wt % to styrene). The binding efficiency was usually high (ca. 90%), indicating strong adhesion between the silica core and the polymer shell. There were approximately four or five original silica beads, which formed a cluster, per composite of nanoparticles whose size was about 60–70 nm. Other main factors of polymerization conditions including the amounts of sodium dodecyl sulfonate and silica are also discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2253–2262, 2004  相似文献   

8.
Antibacterial hydrogels containing quaternary ammonium (QA) groups were prepared via a facile thiol‐ene “click” reaction using multifunctional poly(ethylene glycol) (PEG). The multifunctional PEG polymers were prepared by an epoxy‐amine ring opening reaction. The chemical and physical properties of the hydrogels could be tuned with different crosslinking structures and crosslinking densities. The antibacterial hydrogel structures prepared from PEG Pendant QA were less well‐defined than those from PEG Chain‐End QA. Furthermore, functionalization of the PEG‐type hydrogels with QA groups produced strong antibacterial abilities against Staphylococcus aureus, and therefore has the potential to be used as an anti‐infective material for biomedical devices. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 656–667  相似文献   

9.
Effects of particle concentration on the irreversible aggregation of colloidal silica are studied using in situ destabilization via the ionic strength increase derived from the enzymatic hydrolysis of urea by urease. Aggregation is monitored by time-resolved optical density and dynamic light scattering measurements. It terminates at a gel boundary, signaled by a prominent increase of the optical density and incipient non-ergodicity. Raman scattering is used to demonstrate that the enzymatic reaction continues, well beyond gelation for the compositions studied here, until the urea is consumed. Calibration of the ionic conductivity permits for constructing stability diagrams in terms of particle and salt concentration. As with reversible gelation, the process exhibits a collective character in that lower ionic strengths are required for gelation of concentrated dispersions and vice versa. However, light scattering demonstrates that the gel boundary is preceded here by a line marking the transition from reversible to irreversible cluster formation, with the two transition boundaries tracking each other. Comparisons are made with dispersions destabilized by direct addition of salt solutions, which gel under very different conditions.  相似文献   

10.
Three reactive epoxy–amine systems based on diglycidyl ether of bisphenol A (DGEBA) with 4,4′-diaminodiphenylsulfone (DDS), 4,4′-methylenebis [3-chloro 2,6-diethylaniline] (MCDEA), and 4,4′-methylenebis [2,6-diethylaniline] (MDEA), were studied during isothermal curings at 140 and 160°C. The simultaneous kinetic and dielectric studies allow to express conductivity, σ, in terms of conversion, x, and of glass transition temperature, Tg. The conductivity, σ0, of the initial monomer mixture and, σ of the fully cured network are measured. It is found that:
  • The glass transition temperature, Tg, versus conversion, x, curves follows the equation of Di Benedetto modified by Pascault and Williams
  • There exists a linear relation between log σ/log σ0 and Tg.
So, it is possible to predict both kinetic and dielectric behaviors of these epoxy-amine systems by the knowledge of Tg0, ΔCp0, and σ0, respectively, glass transition temperature, heat capacity, and conductivity of initial monomer mixture, Tg and ΔCp, and σ, respectively, glass transition temperature and heat capacity and conductivity of fully cured network. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2911–2921, 1998  相似文献   

11.
Two types of silica: precipitated (P, prepared in non‐polar media, a new type, submicrometer sized) and fumed (F, nanosized), both unmodified and surface modified are investigated as functional fillers for potential applications in nanocomposites with poly(2‐hydroxyethyl methacrylate) matrix. Special attention is paid to the kinetics of composite formation in an in situ photopolymerization process. Silica‐containing formulations polymerize faster; this effect is much stronger for silica P having much larger particle size than silica F. Surface treatment leads to further acceleration of the polymerization in case of silica P but to retardation in case of silica F; the effect of modification of the filler surface on properties of composites is different for each of the silicas. The obtained results are discussed in terms of effects of curvature of silica particles, surface properties, solvation cell, interphase region, viscosity changes, and morphology of the resulting composites. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3472–3487  相似文献   

12.
13.
The reinforcement and nonlinear viscoelastic behavior have been investigated for silica (SiO2) filled solution‐polymerized styrene butadiene rubber (SSBR). Experimental results reveal that the nonlinear viscoelastic behavior of the filled rubber is similar to that of unfilled SSBR, which is inconsistent with the general concept that this characteristic comes from the breakdown and reformation of the filler network. It is interesting that the curves of either dynamic storage modulus (G′) or loss tangent (tan δ) versus strain amplitude (γ) for the filled rubber can be superposed, respectively, on those for the unfilled one, suggesting that the primary mechanism for the Payne effect is mainly involved in the nature of the entanglement network in rubbery matrix. It is believed there exists a cooperation between the breakdown and reformation of the filler network and the molecular disentanglement, resulting in enhancing the Payne effect and improving the mechanical hysteresis at high strain amplitudes. Moreover, the vertical and the horizontal shift factors for constructing the master curves could be well understood on the basis of the reinforcement factor f(φ) and the strain amplification factor A(φ), respectively. The surface modification of SiO2 causes a decrease in f(φ), which is ascribed to weakeness of the filler–filler interaction and improvement of the filler dispersion. However, the surface nature of SiO2 hardly affects A(φ). © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2594‐2602, 2007  相似文献   

14.
This report focuses on epoxy‐dicyandiamide (DICY) curing system accelerated by N‐aryl‐N′,N′‐dialkyl urea, aiming at clarifying the accelerating mechanism and the relationship between accelerating effect and molecular structure of the accelerators. Nine N‐aryl‐N′,N′‐dialkyl ureas were synthesized and investigated with measurements of differential scanning calorimetry, thermo gravimetric/differential thermal analysis and NMR spectroscopy. The results revealed that the ureas released the corresponding secondary amines by the thermal dissociation in the presence of epoxide, which led to the formation of tertiary amines that catalyze the addition reaction of DICY to epoxide. Moreover, a tendency that the ureas able to release more compact amines exhibited higher acceleration effects was discovered. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

15.
To prepare silica nanoparticle having flame retardant activity, the immobilization of flame retardant onto hyperbranched poly(amidoamine) (PAMAM)‐grafted silica was investigated. Grafting of PAMAM onto a silica surface was achieved in a solvent‐free dry‐system using PAMAM dendrimer synthesis methodology. The immobilization of bromine flame retardant, poly(2,2′,6,6′‐tetrabromobisphenol‐A) diglycidyl ether (PTBBA), was successfully achieved by the reaction of terminal amino groups of PAMAM‐grafted silica (Silica‐PAMAM) with epoxy groups of PTBBA. The immobilization of PTBBA was confirmed by FTIR and thermal decomposition GC‐MS. The amount of PTBBA immobilized onto Silica‐PAMAM was determined to be 60 wt %. PTBBA‐immobilized Silica‐PAMAM (Silica‐PAMAM‐PTBBA) was dispersed uniformly in a epoxy resin, and the epoxy resin was cured in the presence of hexamethylenediamine. Flame retardant activity of the epoxy resin filled with Silica‐PAMAM‐PTBBA was estimated by limiting oxygen index (LOI). The LOI of epoxy resin filled with Silica‐PAMAM‐PTBBA was higher than that filled with untreated silica and free PTBBA. It was confirmed that the flame retardant activity of epoxy resin was improved by the addition of the Silica‐PAMAM‐PTBBA. The elimination of PTBBA from the epoxy resin filled with Silica‐PAMAM‐PTBBA into boiling water was hardly observed by immobilization of PTBBA onto silica surface. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6145–6152, 2009  相似文献   

16.
Mechanical properties of low density polyethylene filled with various organic fillers were investigated. Different effect of different fillers on the properties was observed and the effect of crosslinking of these materials is also different. Fine anisotropic fillers behave similarly as inorganic fillers. The effect of crosslinking is the highest for composites containing large particulate fillers like beech wood flour. The effects are discussed in terms of mechanical behaviour and crosslinking degree determined from extraction or equilibrium swelling data. A formation of covalent bonds between the filler surface and polymeric matrix is proposed as a result of crosslinking.  相似文献   

17.
Epoxy composites filled with boric acid and natural zeolite with different percentage (1, 5, and 10 wt%) were prepared. Hexamethylenediamine and polyethylenpolyamine were used as curing agents. The prepared samples and starting materials were examined using the methods of thermal analysis and scanning electron microscopy. The parameters of thermal decomposition in argon were analyzed. The limiting oxygen index was calculated in accordance with Van Krevelen and Hoftyzer equation. The thermal characteristics of the studied composites depend on the filler content. The results showed that the incorporation of 10 wt% fillers both boric acid and natural zeolite significantly improved the thermal properties of the obtained composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The microwave and thermal cure processes for the epoxy-amine systems (epoxy resin diglycidyl ether of bisphenol A, DGEBA) with 4,4′-diaminodiphenyl sulphone (DDS) and 4,4′-diaminodiphenyl methane (DDM) have been investigated for 1 : 1 stoichiometries by using fiber-optic FT-NIR spectroscopy. The DGEBA used was in the form of Ciba-Geigy GY260 resin. The DDM system was studied at a single cure temperature of 373 K and a single stoichiometry of 20.94 wt% and the DDS system was studied at a stoichiometry of 24.9 wt% and a range of temperatures between 393 and 443 K. The best values of the kinetic rate parameters for the consumption of amines have been determined by a least squares curve fit to a model for epoxy/amine cure. The activation energies for the polymerization of the DGEBA/DDS system were determined for both cure processes and found to be 66 and 69 kJ mol−1 for the microwave and thermal cure processes, respectively. No evidence was found for any specific effect of the microwave radiation on the rate parameters, and the systems were both found to be characterized by a negative substitution effect. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
Composite films based on polyamide 6 and lamellar unmodified α‐ZrP nanofillers have been prepared for low filler amounts (less than 2 wt %) using cast process or blowing process. Whatever be the filler content and the film process conditions, the lamellar nanofillers were not intercalated by the polymer chains and microcomposites were obtained. On the other hand, the matrix crystalline structure highly depended on the presence of fillers and on the film process conditions. The nature of the crystalline phase and its orientation were shown to play a major role on the film barrier properties to helium. For instance, the presence of γ crystalline phase associated to a specific orientation of the crystalline lamellae parallel to the film surface could significantly contribute to enhance barrier properties. This specific morphology was favored by the presence of α‐ZrP in the formulation but depended also on the process conditions. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1734–1746, 2008  相似文献   

20.
The performance of plasma surface modified silica filler in styrene‐butadiene rubber (SBR) matrix has been analyzed. The conditions of plasma modification have been optimized by taking secant modulus as a standard parameter and the occurrence of the modification has been confirmed by surface area determination and Fourier transform infrared spectroscopy. The plasma‐modified surface of silica has been found to be composed of carbon–carbon double bonds and carbon–hydrogen bonds. Silane treatment also has been carried out on silica filler surface for a comparative assessment of its influence in the curing behavior and filler–rubber interaction. The cure reactions of all the rubber compounds have been found to be proceeded according to first‐order kinetics. A reduction in the cure reaction rate constant has been observed with the loading of unmodified and surface modified silica, emphasizing the cure deactivation of the matrix rubber by the silica filler. The filler dispersion, as revealed by scanning electron microscopy, has been found to be greatly improved by the plasma as well as silane treatment. The filler–rubber interaction has been found to be greatly improved by both surface treatments, but the best balance of mechanical properties has been observed with plasma surface modification only. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号