首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This work demonstrates the successful incorporation of functionalized single‐walled carbon nanotubes (f‐SWCNTs) into the phenylboronate‐diol crosslinked polymer gel to create a hybrid system with reversible sol–gel transition. The phenylboronic acid‐containing and diol‐containing polymers were first separately prepared by the reversible addition–fragmentation chain transfer polymerization. Covalent functionalization of single‐walled carbon nanotubes (SWCNTs) with an azide‐derivatized, diol‐containing polymer was then accomplished by a nitrene addition reaction. Subsequently, the hybrid gels were prepared by crosslinking the mixture of f‐SWCNTs and diol‐containing polymer with the phenylboronic acid‐containing polymer. The hybrid gel has been characterized by scanning electron microscopy (SEM) and rheological analysis. The SEM measurement demonstrated a homogeneous dispersion of f‐SWCNTs within the gel matrices. Rheological experiments also demonstrated that the hybrid gel exhibited storage moduli significantly higher than those of the native gel obtained from the phenylboronic acid‐containing and diol‐containing polymers. The hybrid gel can be switched into their starting polymer (f‐SWCNTs) solutions by adjusting the pH of the system. Moreover, the hybrid gel revealed a self‐healing property that occurred autonomously without any outside intervention. By employing this dynamic character, it is possible to regenerate the used gel, and thus, it has the potential to perform in a range of dynamic or bioresponsive applications Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
A trans-4-(p-N,N-dimethylaminostyryl)-N-vinylbenzylpyridinium chloride (vbDMASP) fluorescence probe was optimized in ground and excited state as a function of change in the microenvironment polarity, using the Amsol HyperChem program package. In the calculations, protic and aprotic solvents were used. On this basis a change in the molecule geometry after excitation, depending on the surrounding solvent, was determined.Absorption and steady-state fluorescence spectra of vbDMASP in the solvent of different polarity and in the model water–glycerol solutions were also recorded. On the basis of Stokes’ shift change with the Onsager polarity scale a change in the dipole moment of the probe during transition from ground to excited state, in protic and aprotic solvents was determined.Since during the sol–gel transition of tetraethylorthosilane in the acidic environment both polarity and viscosity of the microenvironment change the vbDMASP probe was applied and fluorescence time-resolved measurements were done. On this basis the correlations between the results of time-resolved measurements for the multichromophoric probe applied in the gelation process and molecular optimization data are discussed.  相似文献   

4.
Sol—gel films prepared from organosilanes containing acidic/basic sites have been investigated as permselective and ion-exchange coatings for electroanalytical and bioanalytical investigations. When a glassy carbon electrode was modified with a sol—gel film fabricated from 3-aminopropyl-methyl-diethoxysilane (silane—NH2), excellent permselectivity and anion-exchange properties were obtained. For a pH 7.4, 1 mM potassium ferricyanide solution, an eight-fold increase in current was observed after the electrode was immersed in solution for 10min whereas complete suppression of the electrochemical response for ruthenium hexaamine and methyl viologen was observed. Sol—gel films fabricated from trimethoxysilylpropyl ethylenediamine triacetic acid (silane—(COOH)3) exhibited nearly complementary behavior. An approximately 10-fold increase in current was observed for pH 7.4, 1 mM ruthenium hexaammine solutions and complete suppression of the potassium ferricyanide response was observed. These ion-exchange properties can be attributed to the strong electrostatic interactions between the acid/basic functional group in the matrix and the highly charged analyte molecules. When glassy carbon electrodes were modified with diethyl-(triethoxysilypropyl) malonate (silane—(COOEt)2), the films did not exhibit distinct ion-exchange properties but rather suppressed the reduction of potassium ferricyanide. The observed permselectivity results from the electron dense carbonyl group and/or hydrolyzed ester functionalities in the film.  相似文献   

5.
Comb‐like amphiphilic poly(poly((lactic acid‐co‐glycolic acid)‐block‐poly(ethylene glycol)) methacrylate (poly((PLGA‐b‐PEG)MA)) copolymers were synthesized by radical polymerization. (PLGA‐b‐PEG)MA macromonomer was prepared by ring‐opening bulk polymerization of DL ‐lactide and glycolide using purified poly(ethylene glycol) monomethacrylate (PEGMA) as an initiator. (PLGA‐b‐PEG)MA macromonomer was copolymerized with PEGMA and/or acrylic acid (AA) by radical polymerization to produce comb‐like amphiphilic block copolymers. The molecular weight and chemical structure were investigated by GPC and 1H NMR. Poly((PLGA‐b‐PEG)MA) copolymer aqueous solutions showed gel–sol transition behavior with increasing temperature, and gel‐to‐sol transition temperature decreased as the compositions of the hydrophilic PEGMA and AA increased. The gel‐to‐sol transition temperature of the terpolymers of the poly((PLGA‐b‐PEG)MA‐co‐PEGMA‐co‐AA) also decreased when the pH was increased. The effective micelle diameter obtained from dynamic light scattering increased with increasing temperature and with increasing pH. The critical micelle concentration increased as the composition of the hydrophilic monomer component, PEGMA and AA, were increased. The spherical shape of the hyperbranched polymers in aqueous environment was observed by atomic force microscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1954–1963, 2008  相似文献   

6.
Organically modified sol‐gel coatings have been investigated as potential replacements for chromate conversion treatments of an AA1050 aluminium alloy. The coatings were prepared by combination of a completely hydrolysable precursor of tetra‐n‐propoxyzirconium (TPOZ), with a partially hydrolysable precursor of glycidoxypropyltrimethoxysilane (GPTMS). GPTMS contains an organic functional group, which is retained in the sol‐gel coatings after the hydrolysis–condensation process. Different GPTMS/TPOZ ratios and withdrawal speeds were studied. Coatings produced using a low GPTMS/TPOZ ratio and a high withdrawal speed generated significant cracks due to the shrinkage of the coatings, with no corrosion protection of the alloy. It was found that increase of organic moieties reduced the shrinkage of the coatings and the tendency for crack formation. By control of process parameters and ratios of organic and inorganic moieties, crack‐free sol‐gel coatings above 1 µm thick, with improved corrosion protection, can be produced on the alloy surface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Two hybrid coatings synthesized by using alkoxysilanes as precursors in a sol–gel process, differing from each other in terms of the organic components in alkoxysilanes, have been developed to improve the water repellent properties of base paper. The sol–gel‐coated base paper samples were characterized by scanning electron microscopy, atomic force microscopy, confocal laser scanning microscopy, X‐ray photoelectron spectroscopy, time‐of‐flight secondary ion mass spectrometry, and contact angle measurements. The sol–gel coatings were found to clearly change the surface properties of base paper. Thin coating layers were formed on base paper surfaces. The topographical data indicated the formation of discontinuous thin films; the time‐of‐flight secondary ion mass spectrometry analyses confirmed that the coatings were covering the fibres but only partially covered the fibre–fibre intersections. Water and the subsequent heat treatment used as a reference treatment reduced the surface roughness and porosity and slightly changed the surface chemistry of the base paper. The wettability and absorptivity of base paper was clearly reduced by the applied coatings. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Poly(siloxane‐urethane) crosslinked structures were prepared from isophorone diisocyanate, α,ω‐bis(hydroxybutyl)oligodimethylsiloxane and a new hybrid diol containing hydrolysable Si? OC2H5 groups besides OH groups. The latest was synthesized by the acid‐catalyzed reaction between 1,3‐bis(3‐glycidoxypropyl)tetramethyldisiloxane and 3‐aminopropyltriethoxysilane. The formations of the urethane groups along the polymer backbone as well as the formation of the silica domains were first confirmed by the presence of the specific bands in Fourier transform infrared spectra. The resulted materials were characterized using differential scanning calorimetry, thermogravimetric analysis and scanning electron microscopy. The results of the dynamic mechanical analysis (DMA) performed at various frequencies revealed shape memory capabilities for some of the obtained structures. The silica formed because of the hydrolysis‐condensation reactions proved to have reinforcing effect upon siloxane‐urethane structure also evidenced by DMA and increasing water vapor sorption capacity as was measured by dynamic vapor sorption. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
《中国化学会会志》2018,65(8):977-981
LiFePO4/C and LiFe1–xNb xPO4/C composites were synthesized using a sol–gel method. The influence of niobium doping on the constitution, morphology, and electrochemical properties of the samples was studied in detail. X‐Ray diffraction patterns indicate that appropriate Nb doping does not alter seriously the structure of LiFePO4. Electrochemical characterization of the electrodes showed that the Li‐ion batteries based on LiFe1–xNb xPO4/C electrode exhibited better charge/discharge performance than those based on LiFePO4/C. The LiFe0.95Nb0.05PO4/C‐based cell had the specific capacity of 157, 121, and 85 mAh/g at 0.2, 2, and 5 C, respectively, in comparison with 126, 94, and 52 mAh/g for the LiFePO4/C cell. The results show that the addition of niobium promotes the electrochemical performance of the materials especially at high charge/discharge rates of the battery.  相似文献   

10.
Spherical silica particles were synthesized using the sol‐gel method by hydrolyzing tetraethyl orthosilicate (TEOS) with an alkali catalyst, and it was investigated how the experimental conditions (the reaction temperature, the concentration and dropping rate of the hydrolysis catalyst solution) affected the size and morphology of silica particles. Furthermore, the silica particles were doped with sodium fluoride to measure their ion release ability. The mean diameters of the silica particles changed according to the reaction temperature and the dropping rate of the hydrolysis catalyst, namely the higher the reaction temperature or the slower the dropping rate the smaller are the mean diameters. The surface area of the silica particles was significantly different depending on the dropping rate of the hydrolysis catalyst, namely the slower the dropping rate the larger the specific surface area. The specific heat capacity and thermal reduction (TG) of the silica particles were significantly different according to the reaction temperature, namely the higher the reaction temperature the lower the specific heat capacity and the TG. It was found that the fluoride‐retaining ability was proportional to the surface area of silica particles. The fluoride ion release was equilibrated on elapsing 5 min. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
pH and temperature‐sensitive biodegradable poly(β‐aminoester)‐graft‐poly(ε‐caprolactone)‐block‐methoxy poly(ethylene glycol) (PBAE‐g‐PCL‐b‐mPEG) amphiphilic graft copolymers with different molecular weights were synthesized. The structure of these copolymers was adjusted by varying the feed ratios of ε‐caprolactone to methoxy poly(ethylene glycol)s (mPEG), amine and diacrylate monomer amounts and the molecular weight of mPEG. Aqueous solutions of these copolymers formed micelles at lower concentrations; however, the concentrated solutions showed a reversible sol–gel transition property depending on both pH and temperature changes under representative physiological conditions (pH 7.4, 37°C). The effects of the molecular weight of pH‐sensitive poly(β‐aminoester) block and mPEG group, the hydrophobic to hydrophilic block ratio (PCL/mPEG) and the concentration of the copolymer on the sol–gel transition were investigated. Proton nuclear magnetic resonance (1H NMR) and gel permeation chromatography measurements were used to characterize the structure of the synthesized copolymers. The self‐assemble behavior and critical micelle concentration of the amphiphilic copolymers were estimated in phosphate buffer solution using fluorescence spectroscopy. The gelling behavior was measured by using tube inversion method. At pH 7.4, all copolymer solutions prepared 20 wt% concentration indicated sol–gel transition with increasing temperature. In vitro degradation experiments displayed that the synthesized graft copolymers mostly degraded hydrolytically within 20 days under physiological conditions. In order to investigate the potential application of synthesized hydrogels in drug delivery, Methylene Blue was used and approximately 70% of the loaded amount was released in 120 hr. The findings indicate that obtained graft copolymers can be used as injectable biodegradable carriers for pharmaceutical drugs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Sol‐gel transition of dispersions of biopolymers, which are used widely in food, cosmetics, biomedical and related industries, is classified by the temperature dependence of storage shear modulus. Sol‐gel transition of gellan gum solution is described well by a criterion of Winter‐Chambon. Too fast gelation of dispersions of konjac glucomannan in the presence of excessive amount of alkaline coagulant and/or at higher temperatures leads to a formation of gels with lower modulus. A solution of xyloglucan from which a certain amount of galactose residues is removed forms a gel on heating and reverts into a solution on further heating. The lower temperature transition of this xyloglucan solution is induced by hydrophobic interaction.  相似文献   

13.
14.
Viscoelastic properties of four linear and three very lightly crosslinked polybutadienes (microstructure about 50% trans) were studied. Of the latter, two had not reached the gel point, and their molecular weight distributions were determined by sedimentation velocity analysis; the third was crosslinked just past the gel point, with only 32% gel fraction present. The crosslinking agent was sulfur. Complex shear compliances were measured over a frequency range from 0.1 to 1000 cps at temperatures from ?70 to 30°C. with a Fitzgerald transducer and a Plazek torsion pendulum; and torsional creep measurements were made over time periods up to about three days. The creep data were converted to the corresponding dynamic viscoelastic functions at very low frequencies by conventional approximation methods. All data were reduced to 25°C. by shift factors calculated from a previously adopted equation of the WLF form. In the transition zone, the viscoelastic properties of linear samples were almost independent of molecular weight. The entanglement spacing, derived from the minimum in the loss tangent and the inflection in the storage compliance, was 130 to 160 chain atoms. The maximum in the retardation spectrum attributable to motions of individual network strands was closely similar to the corresponding maxima for more highly crosslinked vulcanizates previously studied, showing that even in the latter it is associated with entanglement network strands rather than strands between chemical crosslinks. For a linear sample with molecular weight 180,000, the retardation processes disappear at times beyond about 10 sec. at 25°C. With crosslinking short of the gel point (i.e., branching) the slow retardation processes are enormously increased and prolonged to longer times. With further crosslinking through the gel point and beyond, the slow retardation processes decrease progressively in magnitude. Qualitatively, this behavior resembles the sharp maximum in content of highly branched and aggregated molecular species which is predicted at the gel point by crosslinking statistics; but the slow processes (or low-frequency losses) persist farther past the gel point than would be expected on this basis. The steady-state compliances of the linear samples were smaller, but for a sample crosslinked short of the gel point were much larger, than the prediction of the Rouse theory modified for molecular weight distribution.  相似文献   

15.
A stable nonlinear optical (NLO) film containing “T” type alkoxysilane dye was prepared by sol–gel technology. This crosslinked “T” type alkoxysilane dye was synthesized and fully characterized by FTIR, UV–Vis spectra, and 1H‐NMR. Followed by hydrolysis and copolymerization processes of the alkoxysilane with γ‐glycidoxypropyl trimethoxysilane (KH560) and tetraethoxysilane (TEOS), high quality inorganic–organic hybrid second‐order NLO films were obtained by spin coating. The “T” type structure of the alkoxysilane was found to be effective for improving the temporal stability of the optical nonlinearity due to the reduction in the relaxation of the chromophore in the film materials. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The sol–gel transition mechanism of a thermoreversible hydrogel composed of a copolymer comprising poly(N-isopropylacrylamide) and poly(ethylene glycol) (PNIPAAm–PEG) was studied by NMR. The 1H– and 13C–NMR spectra measured on a PNIPAAm–PEG solution in 99.9% D2O showed a remarkable line width broadening of the PNIPAAm block of more than that of the PEG block, during thermally induced hydrogel formation. This result suggested that the mobility of the PNIPAAm block is more restricted than that of the PEG block during gelation. A crosslinked polymer network formation was ascertained by a sudden reduction in the spin-lattice relaxation time (T1) of the residual HDO proton during gelation. The temperature dependency of the T1 values for the PNIPAAm and PEG blocks revealed that the microscopic condition of the PNIPAAm block in water was drastically changed during gelation, while that of the PEG block was unchanged. The experimental results from NMR supported the following gelation mechanism; that an aggregation of PNIPAAm blocks in the separate copolymers caused by hydrophobic interaction forms crosslinking points to give an infinite three-dimensional network structure. The hydrated PEG chains in the copolymers provide the network with a swelling property in water, and prevent the aggregation from causing a macroscopic phase separation.  相似文献   

17.
Six new methyl silicon (IV) precursors of the type [MeSi{ON?C(R)Ar}3] [when R = Me, Ar = 2‐C5H4N ( 1 ), 2‐C4H3O ( 2 ) or 2‐C4H3S ( 3 ); and when R = H, Ar = 2‐C5H4N ( 4 ), 2‐C4H3O ( 5 ) or 2‐C4H3S ( 6 )] were prepared and structurally characterized by various spectroscopic techniques. Molecular weight measurements and FAB (Fast Atomic Bombardment) mass spectral studies indicated their monomeric nature. 1H and 13C{1H} NMR spectral studies suggested the oximate ligands to be monodentate in solution, which was confirmed by 29Si{1H} NMR signals in the region expected for tetra‐coordinated methylsilicon (IV) derivatives. Thermogravimetric analysis of 1 revealed the complex to be thermally labile, decomposing to a hybrid material of definite composition. Two representative compounds ( 2 and 4 ) were studied as single source molecular precursor for low‐temperature transformation to silica‐based hybrid materials using sol–gel technique. Formation of homogenous methyl‐bonded silica materials (MeSiO3/2) at low sintering temperature was observed. The thermogravimetric analysis of the methylsilica material indicated that silicon‐methyl bond is thermally stable up to a temperature of 400 °C. Reaction of 2 and Al(OPri)3 in equimolar ratio in anhydrous toluene yielded a brown‐colored viscous liquid of the composition [MeSi{ON?C(CH3)C4H3O}3.Al(OPri)3]. Spectroscopic techniques 1H, 13C{1H}, 27Al{1H} and 29Si{1H} NMR spectra of the viscous product indicated the presence of tetracoordination around both silicon and aluminum atoms. On hydrolysis it yielded methylated aluminosilicate material with high specific surface area (464 m2/g). Scanning electron micrography confirmed a regular porous structure with porosity in the nanometric range. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Polyimide (PI) nanocomposites prepared by the in situ generation of crosslinked organosilicon nanophase (ON) through the sol‐gel process were characterized by densities, thermally stimulated depolarization currents and dielectric relaxation spectroscopy. Both a looser molecular packing of PI chain fragments adjacent to the ON and a loose inner structure of the spatial aggregates of ON were assumed to be responsible for a non‐additive decrease of the experimental values of dielectric permittivity for the nanocomposites. The pattern of composition dependence of the apparent dielectric permittivity of the ON suggested a probability of a morphological change around the composition PAAS/MTS = 100/16 (presumably, a sort of percolation transition from small‐size, individual clusters into large‐size, infinite clusters). Thus, PI reinforced with the sol‐gel derived nanophase may have a reasonably good potential as low dielectric permittivity materials. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
In recent years, many hybrid inorganic‐organic systems have been proposed in order to replace the traditional conversion coatings on metals like aluminum, and some results have been promising. However, many proposed solutions are based on complicated processes which are not easy to be adapted to industrial scale. The aim of this study was to establish a simple process leading to the production of highly efficient corrosion protective hybrid sol‐gel coating systems for the aluminum alloys as replacement for the highly hazardous conventional chromate conversion coatings. Hybrid coatings have been realized by means of the sol‐gel process. CeO2 and ZnO have been introduced as dispersions of nanoparticles in the system and used as corrosion inhibitors. The aim of this work was to obtain pore‐free coatings with increased barrier properties using nanoparticles that possess the double function of pore fillers and corrosion inhibitors. The proposed processes led to coating materials with good adherence to the aluminum substrate and an extremely long life in the accelerated neutral salt spray test according to DIN ISO 9227. Electrochemical impedance spectroscopy approves these results by high impedance values in the low‐frequency region of the Bode plot. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
This work about the development of yttria‐based polymeric coating using [bis(hydroxyethyl) amine] terminated polydimethylsiloxanes and yttrium trimethoxyethoxide inside the capillary. The coated capillary was utilized for online capillary microextraction and high‐performance liquid chromatography analysis. The prepared coating material was characterized using scanning electron microscopy, X‐ray photoelectron spectroscopy, energy dispersive X‐ray spectrometry, and thermogravimetric analysis. The coated capillary with polymer presented better extraction efficiency compared with the pure yttria‐based coated capillary with applicability in extreme pH environments (pH 0–pH 14). Excellent extraction towards polyaromatic hydrocarbons, aldehydes, ketones, alcohols, phenols, and amides was observed with limit of detection ranging from 0.18 to 7.35 ng/mL (S/N = 3) and reproducibility in between 0.6 and 6.8% (n = 3). Capillary‐to‐capillary extraction analysis has presented reproducibility between 4.1 and 9.9%. The analysis provided linear response for seven selected phenols in the range of 5–200 ng/mL with R2 values between 0.9971 and 0.9998. The inter‐day, intra‐day, and capillary‐to‐capillary reproducibility for phenols was also <10%. Real sample analysis by spiking 5, 50, and 200 ng/mL of phenols in wastewater and pool‐water produced recovery between 84.7 and 94.3% and reproducibility within 7.6% (n = 3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号