首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To prevent the precipitation reaction between glycyrrhizin ( 1 ) and berberine ( 3 ) in the decoctions of Glycyrrhiza/Coptis rhizome or Glycyrrhiza/Phellodendron bark, the presence of cyclodextrin (CD) in the mixture was proven to be effective. The preventing effect decreased in the order γ‐CD>β‐CD, and no effect was observed for α‐CD. On the other hand, the extraction degree of 1 from the natural medicine Glycyrrhia was considerably increased in the presence of γ‐CD, γ‐CD being much more effective than α‐ or β‐CD. Thus, the blocking effect of CD on the precipitate formation between 1 and 3 is suggested to be primarily dependent on the stability of the inclusion complex of the CD with 1 . To establish the structure of such a preferred inclusion complex, the interactions of 1 with β‐ and γ‐CDs were investigated by 1H‐NMR spectroscopy and molecular‐dynamics (MD) calculations. The 1H‐NMR measurements showed that the increase in solubility of 1 in H2O is dependent on the degree of its inclusion into the CD, which depends on the molecular size of the CD. The MD calculations suggested that the H‐bond interactions are sufficiently strong to form a stable [ 1 /γ‐CD] complex, in which the lipophilic rings C, D, and E of 1 are fully inserted into the molecular cavity of γ‐CD, thus forming a kind of structure covered by a hydrophilic molecular capsule, while such an interaction mode is impossible for α‐ or β‐CD.  相似文献   

2.
The peracetylated hexaamylose (maltohexaose) 18 was obtained by an improved acetolysis of cyclomaltohexaose (α‐cyclodextrin, α‐CD, 16 ), and transformed into the benzyl‐ and 4‐chlorobenzyl‐protected thioglycosides 22 and 23 , respectively (Scheme 2). Sequential chain elongation of 22 and 23 by glycosidation of the C‐ethynylated glucosides 9 and 11 gave the α‐anomeric heptaglycosides 24 and 26 , respectively, and their anomers 25 and 27 (Scheme 3). These were transformed into the glycosyl acceptors 28 , 30 , and 31 . Glycosidation of 28 and 30 by 13 and 15 , respectively, led to the benzyl‐protected octasaccharides 32 (αα5α) and 33 (βα5α), and to the chlorobenzylated analogues 34 (αα5α) and 35 (βα5α), while glycosidation of 31 led to the 4‐chlorobenzyl‐protected analogues 36 (αα5β) and 37 (βα5β) (Scheme 4). Hay coupling of O‐Bn‐ and O‐Ac‐protected linear octaoses 32 (αα5α) and 33 (βα5α) led to the cyclooctaamylose (γ‐cyclodextrin) analogues 38 and 43 , respectively (Scheme 5). Similarly, the 4‐chlorobenzyl‐protected analogues 34 and 35 gave 39 and 44 , and the anomeric linear precursors 36 and 37 provided the cyclootaamylose analogues 48 and 50 , respectively (Scheme 6). The influence of the constitution and configuration of the linear precursors on the rate and yield of the cyclisation was relatively weak. Deprotection and hydrogenation of 38 and 43 yielded the γ‐CD analogues 42 (αα5α) and 47 (βα5α), where one glycosidic O‐atom is replaced by a butanediyl group, while FeCl3‐promoted dechlorobenzylation of 39 and 44 did not affect the butadiyne moiety and afforded the acetyleno γ‐CD's 40 (αα5α) and 45 (βα5α), respectively. Similarly, deprotection of 48 and 50 afforded the acetyleno γ‐CD analogues 49 (αα5β) and 51 (βα5β), respectively, which contain one butanediyl moiety instead of a glycosidic O‐atom. MM3* Force‐field calculations evidence the strong influence of the configuration and constitution of the new γ‐CD analogues on the shape of the cavity.  相似文献   

3.
The regio‐ and stereoselective, Lewis acid catalyzed Strecker reaction between Me3SiCN and different aldimines incorporating a 2,3,4,6‐tetrakis‐O‐pivaloyl‐D ‐glucopyranosyl (Piv4Glc) chiral auxiliary has been worked out. Depending on the conditions used, high yields (up to 95%) and good diastereoselectivities (de > 86%) were achieved under mild conditions (Table 1), especially with CuBr ? Me2S as catalyst. Our protocol allows the ready preparation of asymmetric β,γ‐unsaturated α‐amino acids such as (R)‐2‐amino‐4‐phenylbut‐3‐enoic acid ( 13 ; Scheme 2) and congeners thereof.  相似文献   

4.
The association of α‐, β‐ and γ‐cyclodextrin (α‐CD, β‐CD and γ‐CD) with sodium dodecyl polyoxyethylenated sulfonate (C12EnS n=1, 3) was studied by means of isothermal titration calorimetry and 1H NMR measurements in aqueous solution at T=298.15 K. The results indicate that the binding processes of β‐CD with the surfactants are characterized by both enthalpy favorable and entropy favorable, while those of α‐CD or γ‐CD with the surfactants are mainly entropy driven. The stoichiometry of β‐CD binding with the surfactants is different with different numbers of oxyethyl groups in surfactant molecules, while that of α‐CD or γ‐CD binding with the surfactants makes no difference. The 1H NMR spectra reveal that chemical shift data of all protons in α‐CD, β‐CD and γ‐CD molecules move to high field in the presence of C12EnS, which can be regarded as a microscopic evidence of the occurrence of inclusion interaction.  相似文献   

5.
The (−)‐ and (+)‐β‐irones ((−)‐ and (+)‐ 2 , resp.), contaminated with ca. 7 – 9% of the (+)‐ and (−)‐transα‐isomer, respectively, were obtained from racemic α‐irone via the 2,6‐trans‐epoxide (±)‐ 4 (Scheme 2). Relevant steps in the sequence were the LiAlH4 reduction of the latter, to provide the diastereoisomeric‐4,5‐dihydro‐5‐hydroxy‐transα‐irols (±)‐ 6 and (±)‐ 7 , resolved into the enantiomers by lipase‐PS‐mediated acetylation with vinyl acetate. The enantiomerically pure allylic acetate esters (+)‐ and (−)‐ 8 and (+)‐ and (−)‐ 9 , upon treatment with POCl3/pyridine, were converted to the β‐irol acetate derivatives (+)‐ and (−)‐ 10 , and (+)‐ and (−)‐ 11 , respectively, eventually providing the desired ketones (+)‐ and (−)‐ 2 by base hydrolysis and MnO2 oxidation. The 2,6‐cis‐epoxide (±)‐ 5 provided the 4,5‐dihydro‐4‐hydroxy‐cisα‐irols (±)‐ 13 and (±)‐ 14 in a 3 : 1 mixture with the isomeric 5‐hydroxy derivatives (±)‐ 15 and (±)‐ 16 on hydride treatment (Scheme 1). The POCl3/pyridine treatment of the enantiomerically pure allylic acetate esters, obtained by enzymic resolution of (±)‐ 13 and (±)‐ 14 , provided enantiomerically pure cisα‐irol acetate esters, from which ketones (+)‐ and (−)‐ 22 were prepared (Scheme 4). The same materials were obtained from the (9S) alcohols (+)‐ 13 and (−)‐ 14 , treated first with MnO2, then with POCl3/pyridine (Scheme 4). Conversely, the dehydration with POCl3/pyridine of the enantiomerically pure 2,6‐cis‐5‐hydroxy derivatives obtained from (±)‐ 15 and (±)‐ 16 gave rise to a mixture in which the γ‐irol acetates 25a and 25b and 26a and 26b prevailed over the α‐ and β‐isomers (Scheme 5). The (+)‐ and (−)‐cisγ‐irones ((+)‐ and (−)‐ 3 , resp.) were obtained from the latter mixture by a sequence involving as the key step the photochemical isomerization of the α‐double bond to the γ‐double bond. External panel olfactory evaluation assigned to (+)‐β‐irone ((+)‐ 2 ) and to (−)‐cisγ‐irone ((−)‐ 3 ) the strongest character and the possibility to be used as dry‐down note.  相似文献   

6.
Ring‐opening polymerization of a new 1,4‐anhydro‐disaccharide monomer, 1,4‐anhydro‐2‐O‐benzyl‐3‐O‐(2,3,4,6‐tetra‐O‐benzyl‐β‐D ‐galactopyranosyl)‐α‐D ‐ribopyranose, which was prepared by the glycosylation of 1,4‐anhydro‐2‐O‐benzyl‐α‐D ‐ribopyranose with 2,3,4,6‐tetra‐O‐acetyl‐1‐O‐trichloroacetimidoyl‐α‐D ‐galactopyranose, was performed for the first time with boron trifluoride etherate to give stereoregular branched ribofuranans having high molecular weights of n = 43.0×103 and positive specific rotation of [α]D25 = +25.1 deg·dm–1· g–1·cm3. The repalcement of the benzyl group by a hydroxyl group gave stereoregular 1,5‐α‐D ‐ribofuranans having a β‐D ‐galactopyranose branch in every repeating unit. The copolymerization of the ribo‐disaccharide monomer with 1,4‐anhydro‐2,3‐di‐O‐benzyl‐α‐D ‐ribopyranose was also carried out to afford stereoregular 1,5‐α‐D ‐ribofuranans having randomly distributed galactopyranose branches on the main chain.  相似文献   

7.
The hydrolysis reactions of N-(O,O'diisopropyl)phosphoryl-L-α-alanine (DIPP-L-α-Ala), N-(O,O'diisopropyl)- phosphoryl-D-α-alanine (DIPP-D-α-Ala), N-(O,O'-diisopropyl)phosphoryl-β-alanine (DIPP-β-Ala) and N-(O,O'-diisopropyl)phosphoryl-γ-amino butyric acid (DIPP-γ-Aba), were studied by HPLC and their hydrolysis reaction kinetic equations were obtained. Under acid conditions, the reaction rate of DIPP-L-α-Ala was close to that of DIPP-D-α-Ala and the same rule was true between DIPP-β-Ala and DIPP-γ-Aba. Meantime, the reaction rate of DIPP-L/D-α-Ala was as 10 times as that of DIPP-β-Ala or DIPP-γ-Aba. Under basic conditions, the hydrolysis reactions of DIPP-β-Ala and DIPP-γ-Aba almost did not take place and the reaction rate of DIPP-L/D-α-Ala was about 1/10 of that under acid conditions. Moreover, theoretical calculation further illuminated the differences of the hydrolysis rate from the view of energy. The results would provide some helpful clues to why nature chose a-amino acids but not other kinds of analogs as protein backbones.  相似文献   

8.
Cyclo‐β‐tetrapeptides are known to adopt a conformation with an intramolecular transannular hydrogen bond in solution. Analysis of this structure reveals that incorporation of a β2‐amino‐acid residue should lead to mimics of ‘α‐peptidic β‐turns’ (cf. A, B, C ). It is also known that short‐chain mixed β/α‐peptides with appropriate side chains can be used to mimic interactions between α‐peptidic hairpin turns and G protein‐coupled receptors. Based on these facts, we have now prepared a number of cyclic and open‐chain tetrapeptides, 7 – 20 , consisting of α‐, β2‐, and β3‐amino‐acid residues, which bear the side chains of Trp and Lys, and possess backbone configurations such that they should be capable of mimicking somatostatin in its affinity for the human SRIF receptors (hsst1–5). All peptides were prepared by solid‐phase coupling by the Fmoc strategy. For the cyclic peptides, the three‐dimensional orthogonal methodology (Scheme 3) was employed with best success. The new compounds were characterized by high‐resolution mass spectrometry, NMR and CD spectroscopy, and, in five cases, by a full NMR‐solution‐structure determination (in MeOH or H2O; Fig. 4). The affinities of the new compounds for the receptors hsst1–5 were determined by competition with [125I]LTT‐SRIF28 or [125I] [Tyr10]‐CST14. In Table 1, the data are listed, together with corresponding values of all β‐ and γ‐peptidic somatostatin/Sandostatin® mimics measured previously by our groups. Submicromolar affinities have been achieved for most of the human SRIF receptors hsst1–5. Especially high, specific binding affinities for receptor hsst4 (which is highly expressed in lung and brain tissue, although still of unknown function!) was observed with some of the β‐peptidic mimics. In view of the fact that numerous peptide‐activated G protein‐coupled receptors (GPCRs) recognize ligands with turn structure (Table 2), the results reported herein are relevant far beyond the realm of somatostatin: many other peptide GPCRs should be ‘reached’ with β‐ and γ‐peptidic mimics as well, and these compounds are proteolytically and metabolically stable, and do not need to be cell‐penetrating for this purpose (Fig. 5).  相似文献   

9.
The preparation of (2S,3S)‐ and (2R,3S)‐2‐fluoro and of (3S)‐2,2‐difluoro‐3‐amino carboxylic acid derivatives, 1 – 3 , from alanine, valine, leucine, threonine, and β3h‐alanine (Schemes 1 and 2, Table) is described. The stereochemical course of (diethylamino)sulfur trifluoride (DAST) reactions with N,N‐dibenzyl‐2‐amino‐3‐hydroxy and 3‐amino‐2‐hydroxy carboxylic acid esters is discussed (Fig. 1). The fluoro‐β‐amino acid residues have been incorporated into pyrimidinones ( 11 – 13 ; Fig. 2) and into cyclic β‐tri‐ and β‐tetrapeptides 17 – 19 and 21 – 23 (Scheme 3) with rigid skeletons, so that reliable structural data (bond lengths, bond angles, and Karplus parameters) can be obtained. β‐Hexapeptides Boc[(2S)‐β3hXaa(αF)]6OBn and Boc[β3hXaa(α,αF2)]6‐OBn, 24 – 26 , with the side chains of Ala, Val, and Leu, have been synthesized (Scheme 4), and their CD spectra (Fig. 3) are discussed. Most compounds and many intermediates are fully characterized by IR‐ and 1H‐, 13C‐ and 19F‐NMR spectroscopy, by MS spectrometry, and by elemental analyses, [α]D and melting‐point values.  相似文献   

10.
((?)‐Menthyl (S)‐6′‐acrylyl‐2′‐methyloxy‐1,1′‐binaphthalene‐2‐carboxylate ( 3 ) was synthesized and anionically polymerized using n‐BuLi as an initiator in toluene. The monomer 3 was levorotatory and had an [α]D25 value of ?72.4, but its corresponding polymer poly‐ 3 was dextrorotatory and showed an [α]D25 value of +162.0. Poly‐ 3 was confirmed to exist in the form of one‐handed helical structure in solution by means of comparing the specific optical rotation and the CD spectra with that of 3 and the model compounds such as (?)‐menthyl (S)‐6′‐propionyl‐2′‐methyloxy‐1,1′‐binaphthalene‐2‐carboxylate 2b and (?)‐menthyl (S)‐6′‐heptanoyl‐2′‐methyloxy‐1,1′‐binaphthalene‐2‐carboxylate 2c . This conclusion was also confirmed by the fact that the g‐value of poly‐ 3 is about 11 times of that of monomer 3 .  相似文献   

11.
Seventeen flavonoids, five of which are flavone C‐diosides, 1 – 5 , were isolated from the BuOH‐ and AcOEt‐soluble fractions of the leaf extract of Machilus konishii. Among 1 – 5 , apigenin 6‐Cβ‐D ‐xylopyranosyl‐2″‐Oβ‐D ‐glucopyranoside ( 2 ), apigenin 8‐Cα‐L ‐arabinopyranosyl‐2″‐Oβ‐D ‐glucopyranoside ( 4 ), and apigenin 8‐Cβ‐D ‐xylopyranosyl‐2″‐Oβ‐D ‐glucopyranoside ( 5 ) are new. Both 4 and 5 are present as rotamer pairs. The structures of the new compounds were elucidated on the basis of NMR‐spectroscopic analyses and MS data. In addition, the 1H‐ and 13C‐NMR data of apigenin 6‐Cα‐L ‐arabinopyranosyl‐2″‐Oβ‐D ‐glucopyranoside ( 3 ) were assigned for the first time. The isolated compounds were assayed against α‐glucosidase (type IV from Bacillus stearothermophilus). Kaempferol 3‐O‐(2‐β‐D ‐apiofuranosyl)‐α‐L ‐rhamnopyranoside ( 12 ) was found to possess the best inhibitory activity with an IC50 value of 29.3 μM .  相似文献   

12.
To understand the increased solubility and decreased bitter taste of berberine, a clinically important isoquinoline alkaloid, in the presence of cyclodextrins, the interaction with γ‐cyclodextrin (γ‐CD) in aqueous solution was studied by a combination of 1H‐NMR analyses and molecular‐dynamics calculations. The proposed complexation mode of berberine by γ‐CD could explain the increased solubility in water. No difference in germicidal activity between berberine alone and its inclusion complex with γ‐ or β‐CD was observed, which is important to further develop the pharmacological application of berberine.  相似文献   

13.
Five β‐peptide thioesters ( 1 – 5 , containing 3, 4, 10 residues) were prepared by manual solid‐phase synthesis and purified by reverse‐phase preparative HPLC. A β‐undecapeptide ( 6 ) and an α‐undecapeptide ( 7 ) with N‐terminal β3‐HCys and Cys residues were prepared by manual and machine synthesis, respectively. Coupling of the thioesters with the cysteine derivatives in the presence of PhSH (Scheme and Fig. 1) in aqueous solution occurred smoothly and quantitatively. Pentadeca‐ and heneicosapeptides ( 8 – 10 ) were isolated, after preparative RP‐HPLC purification, in yields of up to 60%. Thus, the so‐called native chemical ligation works well with β‐peptides, producing larger β3‐ and α/β3‐mixed peptides. Compounds 1 – 10 were characterized by high‐resolution mass spectrometry (HR‐MS) and by CD spectroscopy, including temperature and concentration dependence. β‐Peptide 9 with 21 residues shows an intense negative Cotton effect near 210 nm but no zero‐crossing above 190 nm, (Figs. 2–4), which is characteristic of β‐peptidic 314‐helical structures. Comparison of the CD spectra of the mixed α/β‐pentadecapeptide ( 10 ) and a helical α‐peptide (Fig. 5) indicate the presence of an α‐peptidic 3.613 helix.  相似文献   

14.
The synthesis of thyminyl‐, uracilyl‐, cytosinyl‐, and guaninyl‐β3‐amino acids and the oligomerization of the cytosinyl‐ and guaninyl‐β3‐amino acids to β‐homoalanyl‐PNA are presented. The pyrimidinyl nucleobases were connected to the γ‐position of β‐homoalanine by Mitsunobu reaction with a β‐homoserine derivative or by nucleophilic substitution of methanesulfonates. For the preparation of the guaninyl‐β3‐amino acid, a β‐lactam route was established that might be of interest also for the synthesis of other β3‐amino acid derivatives. The cytosinyl and guaninyl building blocks were oligomerized to hexamers. They form quite stable self‐pairing complexes in H2O as indicated by temperature dependent UV and CD spectroscopy.  相似文献   

15.
《中国化学》2018,36(5):421-429
Reported herein is an example of highly regio‐, diastereo‐ and enantioselective Cu(I)‐catalyzed intermolecular [3+2] cycloaddition reaction of α‐substituted iminoesters with α‐trifluoromethyl α,β‐unsaturated esters. This novel strategy provided a facile access to pyrrolidines with two skipped (aza)quaternary stereocenters including a CF3 all‐carbon quaternary stereocenter. A broad substrate scope was observed and high yields (up to 94%) with excellent diastereoselectivity (up to >20 : 1 d.r.) and enantioselectivity (up to 98% ee) were obtained.  相似文献   

16.
Novel dual molecular‐ and ion‐recognition responsive poly(N‐isopropylacrylamide‐co‐benzo‐12‐crown‐4‐acrylamide) (PNB12C4) linear copolymers with benzo‐12‐crown‐4 (B12C4) as both guest and host units are prepared. The copolymers exhibit highly selective sensitivities toward γ‐cyclodextrin (γ‐CD) and Na+. The presence of γ‐CD induces the lower critical solution temperature (LCST) of PNB12C4 copolymer to shift to a higher value due to the formation of 1:1 γ‐CD/B12C4 host‐guest inclusion complexes, while Na+ causes a negative shift in LCST due to the formation of 2:1 “sandwich” B12C4/Na+ host‐guest complexes. Regardless of the complexation order, when γ‐CD and Na+ coexist with PNB12C4, competitive complexation actions of B12C4 as both guest and host units toward γ‐CD and Na+ finally form equilibrium 2:2:1 γ‐CD/B12C4/Na+ composite complexes, and the final LCST values of PNB12C4 copolymer reach almost the same level. The results provide valuable guidance for designing and applying PNB12C4‐based smart materials in various applications.

  相似文献   


17.
New syntheses of C(2′)‐deuterated ribonucleosides have been accomplished starting either from 3,5‐di‐O‐benzyl‐1‐O‐methyl‐α,β‐D ‐ribofuranose ( 1b ) or 2,3‐O‐isopropylidene‐D ‐ribose ( 14 ), with >97 atom‐% D incorporation in both cases. The former is suited to the demands of multiple‐site deuteration or uniform 13C/multiple 2H double labeling of the ribofuranose moiety, whereas the latter is particularly appropriate for single‐site 2H labeling for mechanistic studies of enzyme reactions.  相似文献   

18.
The crystal structure of N‐[(1‐{2‐oxo‐2‐[2‐(pyrazin‐2‐ylcarbonyl)hydrazin‐1‐yl]ethyl}cyclohexyl)methyl]pyrazine‐2‐carboxamide monohydrate (Pyr‐Gpn‐NN‐NH‐Pyr·H2O), C19H23N7O3·H2O, reveals an unusual trans–gauche (tg) conformation for the gabapentin (Gpn) residue around the Cγ—Cβ1) and Cβ—Cα2) bonds. The molecular conformation is stabilized by intramolecular N—H...N hydrogen bonds and weak C—H...O interactions. The packing of the molecules in the crystal lattice shows a network of strong N—H...O and O—H...O hydrogen bonds together with weak C—H...O and π–π inteactions.  相似文献   

19.
(−)‐ and (+)‐Conduramine B‐1 ((−)‐ and (+)‐ 5 , resp.) have been derived from (+)‐ and (−)‐7‐oxabicyclo[2.2.1]hept‐5‐en‐2‐one (‘naked sugars’ of the first generation). Although (−)‐ 5 imitates the structure of β‐glucosides, it does not inhibit β‐glucosidases but inhibits α‐mannosidases selectively. N‐Benzylation of (−)‐ 5 improves the potency of conduramine B‐1 as α‐mannosidase inhibitor and also generates compounds inhibiting β‐glucosidases. For instance, (−)‐N‐benzyl‐conduramine B‐1 ((−)‐ 19a ) is a competitive inhibitor of β‐glucosidase from almonds (IC50 = 32 μM , Ki = 10 μM ) and a weak inhibitor of α‐mannosidases from jack bean (IC50 = 171 μM ) and from almonds (IC50 = 225 μM ) whereas (−)‐N‐(4‐phenylbenzyl)conduramine B‐1 ((−)‐ 19g ) is a good inhibitor of α‐mannosidase from jack beans (IC50 = 29 μM , Ki = 4.8 μM ) and a weaker inhibitor of β‐glucosidase from almonds (IC50 = 32 μM , Ki = 7.8 μM ) (Table 1).  相似文献   

20.
Like α‐amino acids, β‐ and γ‐amino acids form spirobicyclic complexes (see 2 and 3 ) by reaction with the chiral di‐μ‐chlorobis{2‐[1‐dimethylamino‐ϰN)‐ethyl]phenyl‐ϰC}dipalladium complexes 1 under basic conditions (Scheme 1 and X‐ray structures in Fig. 1). The diastereoisomeric complexes formed with mixtures of enantiomers of either the amino acids or the dichloro‐dipalladium complexes give rise to marked chemical‐shift differences in the 1H‐ and 13C‐NMR spectra (Figs. 2 – 4) to allow determination of the enantiomer purities. A simple procedure is described by which β‐ and γ‐amino acids (which may be generated in situ from Boc‐ or Fmoc‐protected precursors) are converted to the Pd complexes and subjected to NMR measurements. The effects of solvent, temperature, and variation of the aryl group in the chiral derivatizing Pd reagent are described (Figs. 4 and 5). The methyl esters of β‐amino acids can also be employed, forming diastereoisomeric chloro[(amino‐ϰN)aryl‐ϰC][(amino‐ϰN)alkanoate]palladium complexes 6 for determining enantiomer ratios (Scheme 6). The new method has great scope, as demonstrated for β2‐, β3‐, β2,3‐, β2,2,3‐, γ2‐, γ3‐, γ4‐, and γ2,3,4‐amino acid derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号