首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small‐angle X‐ray scattering (SAXS) was used to obtain solution parameters of a weak polyelectrolyte in water in the absence of any additives, such as neutralizing agents or salt. Poly(acrylic acid) (PAA) was used as a weak polyelectrolyte from which SAXS data were obtained in the dilute region of 1–10 mg cm?3. An intrinsic viscosity of 15.7 dL g?1 was obtained from a plot of reciprocal reduced viscosities versus the concentration. The application of the SAXS data, that is, the contour length (L = 1.97 × 104 Å), the persistence length (a* = 58.5 Å), and the molecular weight (M = 5.9 × 105 Da), to the Yamakawa–Fujii equation suggested that PAA in water at 25 °C could be described as a wormlike chain having a cylindrical body of d = 6 Å. An end‐to‐end distance (r = 1.6 × 103 Å) was calculated from r = 2a*L ? 2(a*)2. The nonisotropic expansion factor (α = 2.9) was calculated for PAA expanding from the random coil in dioxane at 30 °C (Θ temperature) to the wormlike chain in water at 25 °C. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1263–1272, 2003  相似文献   

2.
李莉 《高分子科学》2014,32(6):778-785
Spherical polyelectrolyte brushes (SPBs) with PS core and poly(acrylic acid) (PAA) brushes were prepared and analyzed by SAXS in this article. A radial electron density profile of SPB was brought up, which fits well with the SAXS result and shows a core-shell structure. The effect of pH on SPB form was represented by SAXS and it proves that the chains of SPB will stretch in response to increased pH owning to the increased electrostatic repulsion. SPBs immobilized with magnetic nanoparticles or bovine serum albumin (BSA) were prepared and analyzed by SAXS as well. SAXS could characterize the changes of electron density inside brushes of SPBs due to the immobilization of magnetic nanoparticles or BSA. This provides significant supports for further application of immobilized metal nanoparticles or proteins.  相似文献   

3.
A novel capillary flow device has been developed and applied to study the orientation of worm‐like micelles, among other systems. Small‐angle X‐ray scattering (SAXS) data from micelles formed by a Pluronic block copolymer in aqueous salt solution provides evidence for the formation of worm‐like micelles, which align under flow. A transition from a rod‐like form factor to a less persistent conformation is observed under flow. Flow alignment of worm‐like micelles formed by the low molar mass amphiphile system cetyl pyridinium chloride+sodium salicylate is studied for comparative purposes. Here, inhomogenous flow at the micron scale is revealed by streaks in the small‐angle light scattering pattern perpendicular to the flow direction. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Interactions among annealed spherical polyelectrolyte brushes (SPB) in concentrated aqueous dispersion under the effect of concentration, pH, and salt concentration are investigated by means of rheology, and small angle X‐ray scattering (SAXS). SPB consist of a solid polystyrene (PS) core and linear poly(acrylic acid) (PAA) chains densely grafted onto the core by one end. Rheological investigation demonstrates that the viscosity, the storage modulus G′ and the loss modulus G″ of SPB dispersion increase significantly upon increasing the SPB concentration and pH value which reflects the enhanced interactions among SPB. At high pH, a further increase in pH from 8 to 13 has almost no impact on the rheological properties and SAXS curves, while a “Uniform Shell Model” can fit the SAXS data very well probably due to the uniform filling of polyelectrolyte chains among SPB. When increasing the salt concentration from 10?5 to 10?3 M, the so‐called “polyelectrolyte peak” appears at middle to high q range in SAXS curves which means the overlapped polyelectrolyte chains are associated under the bridging effect of counterions, which disappears at higher salt concentration due to the screening effect of further added salts. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 405–413  相似文献   

5.
Changes in the lamellar morphology that occurred during the quiescent isothermal crystallization of absorbable poly(p‐dioxanone) (PDS) and PDS/poly(glycolide) block copolymer were studied by synchrotron small‐angle X‐ray scattering. Important morphological parameters such as the lamellar long period, the thicknesses of the crystal and amorphous phases, and the scattering invariant were estimated as a function of time, and trends observed over a wide range of experimental conditions are discussed. Thicker but more perfect lamellae were detected at higher crystallization temperatures. The breadth of the normalized semilog Lorentz‐corrected intensity peak systematically decreased with increasing temperature. In addition, the values of the crystallization half‐time and the Avrami exponent (n = 2.5), determined from the real‐time changes in the lamellar development, showed superb agreement with the bulk crystallinity data generated from other experimental techniques, such as calorimetry and dielectric relaxation spectroscopy. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 153–167, 2001  相似文献   

6.
Synchrotron small‐angle X‐ray scattering (SAXS) was used to study the isothermal crystallization kinetics of a family of polyanhydride copolymers consisting of 1,6‐bis(p‐carboxyphenoxy)hexane and sebacic acid monomers. In situ SAXS experiments permitted the direct observation of the crystallization kinetics. The structural parameters (the long period, lamellar thickness, and degree of crystallinity) were obtained from Lorentz‐corrected intensity profiles, one‐dimensional correlation functions, and interface distribution functions to form a comprehensive picture of the crystal morphology. The combination of these three analyses provided information not only on the lamellar dimensions but also on the polydispersity (nonuniformity) of these dimensions. Where possible, the crystallization kinetics were interpreted with a modified version of the Avrami equation. The results can be used to perform the rational design of controlled‐drug‐release formulations because crystallinity affects drug‐release kinetics. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 463–477, 2005  相似文献   

7.
The objective of this work was to use both X‐ray and differential scanning calorimetry techniques in a comparative study of the lamellar and crystalline structures of heterogeneous and homogeneous ethylene‐α‐copolymers. The samples differed in the comonomer type (1‐butene, 1‐hexene, 1‐octene, and hexadecene), comonomer content, and catalyst used in the polymerizations. Step crystallizations were performed with differential scanning calorimetry, and the crystallinity and lamellar thicknesses of the different crystal populations were determined. Wide‐angle X‐ray scattering was used to determine crystallinities, average sizes of the crystallites, and dimensions of the orthorhombic unit cell. The average thickness, separation of the lamellae, and volume fractions of the crystalline phase were determined by small‐angle X‐ray scattering (SAXS). The results revealed that at densities below 900 kg/m3, polymers were organized as poorly organized crystal bundles. The lamellar distances were smaller and the lamellar thickness distributions were narrower for the homogeneous ethylene copolymers than for the heterogeneous ones. Step‐crystallization experiments by SAXS demonstrated that the long period increased after annealing. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1860–1875, 2001  相似文献   

8.
Changes in the lamellar and crystalline structures were followed as a function of applied stress to understand the influence of the interactions between the crystalline and amorphous domains on the fiber properties. We observed a reversible transformation from a structure giving a four‐point small‐angle pattern to a structure giving a two‐point pattern; these structures corresponded to the lamellae with oblique and normal lamellar surfaces, respectively. The characteristics of these two structures such as the stack diameter, stack height, and tilt angle were different and were determined by the processing conditions and did not change when the fiber was elastically deformed. The structure giving a two‐point pattern was probably the load‐carrying lamellar entity in these fibers. The diameter of the lamellar stacks, tilt angle of the lamellae, and the strain in the lamellar spacing appeared to have the most influence on properties such as tenacity and dimensional stability. The long‐spacing strain, which is about the same as the fiber strain, determined the modulus at low elongation as well as ultimate elongation. These indicate that the lamellar stacks have at least as much influence as the interfibrillar chains on fiber properties. Structural features that determine the performance in semicrystalline polymers were investigated by analyzing four generations of polyethylene terephthalate fibers. Some of the fiber properties correlate with changes in the crystalline domains such as the crystalline orientation, size, and unit cell dimensions. Fibers in which the crystalline strain was large because of their strong linkages to the amorphous chains, and better load transfer, had the highest modulus and lowest ultimate elongation. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1538–1553, 2003  相似文献   

9.
Fiber‐structure‐development in the poly(ethylene terephthalate) fiber drawing process was investigated with online measurements of wide‐angle and small‐angle X‐ray scattering with both a high‐luminance X‐ray source and a CO2‐laser‐heated drawing system. The intensity profile of the transmitted X‐ray confirmed the location of the neck‐drawing point. The diffraction images had a time resolution of several milliseconds, and this still left much room for improvement. Crystal diffraction appeared in the wide‐angle X‐ray images almost instantaneously about 20 ms after necking, whereas a four‐point small‐angle X‐ray scattering pattern appeared immediately after necking. With the elapse of time after necking, the four‐point scattering pattern changed into a meridional two‐point shape. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1090–1099, 2005  相似文献   

10.
Self‐assembly of diblock copolymers (BCP) into periodic arrays is a promising route to generate templates for the fabrication of nanoscopic elements, when one block is selectively removed. In cylindrical morphology polystyrene‐block‐poly(methyl methacrylate) (PS‐b‐PMMA) copolymer (BCP) films, the efficiency of different processes for removing the PMMA from cylinders is studied using grazing incidence small angle X‐ray scattering (GISAXS), x‐ray reflectivity and critical dimension scanning electron microscopy. The detailed analysis of the GISAXS patterns leads to the determination of the depth of cylindrical holes left by removal of the PMMA. It is found that the combination of a preliminary UV exposure followed by a wet treatment allows to remove totally the PMMA blocks. Furthermore, the optimization of both UV exposition time and solvent allows to preserve the PS matrix and interestingly for nanolithographic applications to decrease the process costs. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1137–1144  相似文献   

11.
Small‐angle X‐ray scattering (SAXS), atomic force microscopy (AFM), and other techniques were combined in a study of segmented thermoplastic elastomers (Pebax) containing poly(tetramethylene oxide) soft segments and hard blocks of nylon‐12. AFM was used to provide real‐space resolution of the morphology during tensile elongation and after subsequent relaxation. Nanofibril formation, starting at strains of about 1.5×, was characterized in detail, showing the evolution of the number, orientation, and size of these highly stressed load‐bearing fibrils that dominated the mechanical properties. AFM results were combined with two‐dimensional SAXS data to develop a model considering the breakup of the original ribbonlike nylon‐12 lamellae in combination with progressive reformation and orientation of highly stressed fibrils. The complex changes in the two‐dimensional SAXS images included a distorted arc pattern due to increased spacing of the lamellae in the stretch direction at low strains, with an evolution to completely different patterns dominated mainly by intrafibrillar and interfibrillar scattering contributions. Between stretch ratios of 1.5 and 2.3× original lamellae were progressively broken up, and by 3.2×, all lamellae independent of the initial orientation were broken into smaller crystals with low aspect ratios. The results were combined with differential scanning calorimetry and birefringence data taken on films under strain to obtain insight into the microscopic basis for strain softening and plastic deformation in Pebax and related segmented polymers. Birefringence cycling with strain provided a consistent picture with the other techniques for understanding the redistribution of stress on a nanoscopic scale during deformation and relaxation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1727–1740, 2002  相似文献   

12.
Small‐angle X‐ray scattering (SAXS) studies of electrically conductive blends based on polyaniline–dodecylbenzenesulfonic acid (PANI–DBSA)/styrene–butadiene–styrene (SBS) triblock copolymer were performed to investigate the influence of the blend preparation procedure on the nanoscopic structure of the blends. The blends were prepared by mechanical mixing (MM) procedure and by in situ polymerization (ISP) of aniline in the presence of SBS. The results indicate that pure PANI–DBSA presents an extended phase consisting of crystalline islands of nanometric size, with a good spatial correlation between them, embedded into an amorphous PANI phase. This feature was not observed in SBS/PANI–DBSA blends prepared by MM or ISP. In MM blends, the PANI phase is constituted by smaller domains, containing poorly spatially correlated crystalline islands, whereas in ISP blends with low or medium amount of PANI, there is no SAXS peak which could be related to a spatial correlation between PANI crystalline islands. The conductivity of the ISP blends is higher when compared to MM blends because of the higher homogeneity at nanometric scale. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3069–3077, 2007  相似文献   

13.
Small‐angle X‐ray scattering (SAXS) gives information on lamellar stacks in semicrystalline polymers. SAXS experiments have been used to follow the melting transition that occurs over a temperature range of 10 °C or more. One common feature is the increase in the average period by 50–100% during the melting process, a change that is often attributed to sequential melting of crystals in the lamellar stack. A quantitative treatment shows that the scattering experiment indicates only the original period, not the average period that increases throughout sequential melting. With this model, I discuss the relation between structural parameters of the melting structure and quantities derived from the SAXS intensity, the correlation function, and the interface distribution function. Uncertainties persist in our understanding of polymer melting. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2454–2460, 2001  相似文献   

14.
Seven different fluoropolymer films were used as matrix materials for radiation‐grafted ion‐exchange membranes. The crystallinity and preferred orientation of these membranes were studied with wide‐angle X‐ray scattering, and the lamellar structure of the membranes was examined with small‐angle X‐ray scattering. The crystallinity of poly(vinylidene fluoride) (PVDF)‐based matrix materials varied between 57 and 40%, and the crystallinity of the sulfonated samples varied between 34 and 23%. The lamellar periods of PVDF‐based matrix materials were about 115 Å, and the lamellar periods of poly(ethylene‐alt‐tetrafluoroethylene) and poly(tetrafluoroethylene‐co‐hexafluoropropylene) were 250 and 212 Å, respectively. When the samples were grafted, the lamellar periods increased. Correlation function analysis showed very clearly that the long‐range order decreased because of grafting and sulfonation processes. For those samples that showed good proton conductivity, the lamellar period also increased because of sulfonation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1539–1555, 2002  相似文献   

15.
A simultaneous wide‐angle and small‐angle X‐ray scattering study of two poly(ethylene naphthalene 2,6‐dicarboxylate) samples crystallized from the glassy state at different annealing temperatures for different annealing times was carried out with synchrotron radiation. Either single or dual melting was induced in the samples, as confirmed by differential scanning calorimetry (DSC). The correlation function and interface distribution function were calculated to evaluate microstructural parameters such as the long spacing, the thickness of the amorphous and crystalline phases, and the width of the size distributions. The sample with dual melting behavior exhibited an abrupt increase of all microstructural parameters at temperatures above the melting of the lowest endotherm, whereas the sample revealing a single melting endotherm did not show such a sudden change. This finding agrees with the concept that the appearance of two melting peaks in DSC traces can be explained by the dual lamellar stacking model. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 881–894, 2001  相似文献   

16.
Structural changes during deformation in solution‐ and gel‐spun polyacrylonitrile (PAN) fibers with multi‐ and single‐wall carbon nanotubes (CNTs), and vapor‐grown carbon nanofibers were investigated using synchrotron X‐ray scattering. Previously published wide‐angle X‐ray scattering (WAXS) results showed that CNTs deform under load, alter the response of the PAN matrix to stress, and thus enhance the performance of the composite. In this article, we find that the elongated scattering entities that give rise to the small‐angle X‐ray scattering (SAXS) in solution‐spun fibers are the diffuse matrix‐void interfaces that follow the Porod's law, and in gel‐spun fibers these are similar to fractals. The observed smaller fraction of voids in the gel‐spun fibers accounts for the significant increase in the strength of this fiber. The degree of orientation of the surfaces of the voids is in complete agreement with those of the crystalline domains observed in WAXS, and increases reversibly upon stretching in the same way as those of the crystalline domains indicating that the voids are integral parts of the polymer matrix and are surrounded by the crystalline domains in the fibrils. The solution‐spun composite fibers have a larger fraction of the smaller (<10 nm) voids than the corresponding control PAN fibers. Furthermore, the size distribution of the voids during elongation changes greatly in the solution spun PAN fiber, but not so in its composites. The scattered intensity, and therefore the volume fraction of the voids, decreases considerably above the glass transition temperature (Tg) of polymer. Implications of these observations on the interactions between the nanotubes and the polymer are discussed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2394–2409, 2009  相似文献   

17.
The morphology and distribution of zirconium oxide and zirconium phosphates in a matrix of sulfonated poly(ether ether ketone) (SPEEK) were investigated with anomalous small‐angle X‐ray scattering (ASAXS) and electron microscopy. ASAXS revealed that ZrO2 was distributed in the SPEEK matrix in the form of nanoparticles smaller than 13 Å. A decrease in the conductivity suggested that the sulfonic groups were bound to the zirconium oxo species at the particle surface. Furthermore, two kinds of membranes containing zirconium phosphate were investigated. In one case, the phosphate was directly dispersed in the polymer solution for the casting of the membrane. In the other case, the phosphate was previously treated with n‐propyl ammonium and polybenzimidazole. From ASAXS data, the fractal dimension could be estimated. Mass‐fractal behavior was confirmed for the SPEEK membrane containing previously exfoliated zirconium phosphate, with aggregates of 6.3–165 Å. Surface‐fractal behavior was detected for membranes with untreated phosphates, with aggregates of 6.4–185 Å. The untreated phosphates caused an increase in the permeability, without changing the proton conductivity much. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 567–575, 2004  相似文献   

18.
Structural and thermodynamic properties of cellulose solutions in the ionic liquid 1‐ethyl‐3‐methylimidazolium acetate (EMIMAc) and its binary mixtures with N,N‐dimethyl formamide (DMF) are studied by small‐angle X‐ray scattering (SAXS). These measurements indicate molecular dissolution of the cellulose chains without any significant aggregation. The power–law relationships of the evaluated correlation length and osmotic modulus to concentration exhibit exponents of ?0.76 and 2.06 for EMIMAc and ?0.80 and 2.14 for DMF/EMIMAc solvent mixture, respectively. Thus, these solvents can be considered to be good solvents for cellulose. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 888–894  相似文献   

19.
To analyze the natural rubber behavior during vulcanization under different cure treatments, an experimental investigation using small angle X‐ray scattering was performed. To achieve this, a set of samples were prepared using sulfur and Nt‐butyl‐2‐benzothiazole sulfenamide as accelerator and then cured at temperatures between 403 and 463 K reaching their optimum mechanical properties considering rheometer tests. The crosslink density of the samples was evaluated by means of the swelling technique in solvent. In the usual Lorentz corrected representation of the X‐ray scattered intensity, a maximum was observed in the plots corresponding to the cured samples, revealing a highly correlated structure. This maximum shifted toward higher values of the scattering vector when the cure temperature of the samples increased. This behavior is discussed in terms of the crosslinks type present in the vulcanized rubber network at different cure temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2966–2971, 2007  相似文献   

20.
The immobilization of lysozymes (pI = 11) onto anionic spherical polyelectrolyte brushes (SPB) which consist of a solid polystyrene core and a densely grafted poly(styrene sulfonate) (PSS) shell was systematically studied by fluorescence spectroscopy and small angle X-ray scattering. Results show that the capture of lysozyme by PSS brush is a dynamic process, which involves a quick agglomeration stage and a slow rearrangement one. And lysozyme inclines to immobilize in the inner layer of the brush, and saturation of lysozyme adsorption onto the SPB is gradually reached as the protein concentration increases, proceeding from the inside to the outside of the brush layers. As increasing the pH and ionic strength, the lysozyme previously adsorbed will be partially released and migrate from the inner to the outer layer of SPB. Last competitive adsorption tests between lysozyme and BSA or β-glucosidase were performed, indicating that besides electrostatic interaction counterion release force also plays an important role in protein adsorption. SPB was proved to be ideal candidate for controllable immobilization of protein, which can be extended into various applications, such as drug delivery and protein separation. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1577–1588  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号