首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blends prepared by melt mixing of thermoplastic elastomer have gained considerable attention in recent years from a heat shrinkability point of view. Our present study deals with the measurement of heat shrinkability of the maleic anhydride grafted low‐density polyethylene and ethylene acrylic elastomer. Two samples have been prepared to study the effect of coupling agent's reactivity on the shrinkability of the blends. The coupling agents used are 4,4′‐diamino diphenyl sulphone, and 4,4′‐diamino diphenyl methane. Shrinkability was measured at room temperature, 120 °C, 150 °C, and 180 °C. Shrinkability is found to be greater in high temperature stretched sample rather than that of room temperature stretched sample. It is observed that reactivity as well as heat shrinkability is more when 4,4′‐diamino diphenyl methane is used as a coupling agent. The mechanism of interchain crosslinking reaction has been confirmed by IR spectroscopy. Differential scanning calorimetry was performed to study the thermal stability of the sample. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
Summary: This work demonstrates that acrylic acid (AA), glycidyl acrylate (GA) and several other acrylic monomers can be photopolymerized and photografted onto high‐density polyethylene (HDPE) by self‐initiation. The self‐initiation mechanism of these acrylic monomers is possibly by an excitation of the monomer to a triplet state (T3) with enough energy to abstract hydrogen from the polymer substrate and initiate the grafting.

Grafting conversion of acrylic acid (AA), methacrylic acid (MAA), 2‐hydroxyethyl acrylate (HEA), glycidyl acrylate (GA), 2‐hydroxyethyl methacrylate (HEMA) and poly(ethylene glycol) methacrylate (PEGMA) as a function of irradiation time.  相似文献   


3.
Silicone‐based impact modifiers were prepared in a previous study. The modifiers were composed of silicone/acrylic rubber cores and grafted acrylic shells. They improved the toughness of poly(vinyl chloride) (PVC) and poly(methyl methacrylate). The silicone emulsion that was used to produce the silicone‐based impact modifiers was prepared via two routes: emulsion polymerization and bulk polymerization of octamethyltetracyclosiloxane. Many silicone‐based impact modifiers were produced that had different silicone/acrylic rubber characteristics. Through a toughness examination of modified PVC, the best composition of the silicone‐based impact modifiers was obtained, and the silicone content in the rubber composition was 25 wt %. The morphology of the silicone‐based impact modifiers, determined by transmission electron microscopy, was as follows: core and second shell polymers were mainly poly(butyl acrylate), and the first shell polymer was silicone. The silicone‐based impact modifiers were blended with engineering resins such as PVC, polycarbonate (PC), poly(butylene terephthalate) (PBT), and PC/PBT mixtures. The impact strength under standard conditions and after weathering test conditions for blends of the silicone‐based impact modifiers were investigated with respect to two commercially available acrylic and methyl methacrylate/butadiene/styrene impact modifiers. The results showed good weatherability and good toughness under low‐temperature conditions for the silicone‐based impact modifiers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1112–1119, 2004  相似文献   

4.
S‐allyl‐4‐methyldithiobenzoate was synthesized and used as a chain transfer agent for the RAFT polymerization of butyl acrylate to produce a functionalized acrylic rubber. A solution of 8 wt% of this functionalized rubber was prepared in styrene and polymerized to generate a material called acrylic rubber‐modified polystyrene (AMP) constituted by well‐dispersed particles of poly(butyl acrylate)‐block‐poly(styrene) into a polystyrene matrix. Impact strength of injection‐molded samples of AMP was measured and compared with the general purpose polystyrene (GPPS) and the high impact polystyrene (HIPS). AMP itself showed an impact strength value similar to GPPS; however, when AMP was blended with conventional HIPS, the resulting material exhibited an improvement of 76–91% as compared to HIPS by itself, without affecting negatively tensile properties. Transmission electron microscopy analysis revealed both kinds of dispersed phases, i.e. the typical salami particles of polybutadiene coming from HIPS (size: 0.5–2 µ) and small particles from poly(butyl acrylate)‐block‐poly(styrene) (size: ~50 nm). We clearly showed that such a bimodality of the particle size distribution caused the positive synergistic effect on impact strength. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Commercial grades of high density polyethylene, HDPE and waste poly(ethylene terephthalate), PET were melt blended over a wide range of compositions. Effect of ethylene acrylic acid copolymer, EAA, ethylene vinyl acetate copolymer, EVA and maleic anhydride grafted EVA as compatibilizers on rheology and mechanical properties of the blend was studied. EAA was found most suitable compatibilizer.  相似文献   

6.
RAFT mediated grafting of poly(t‐butyl acrylate) onto the surface of a commercial poly(ethylene‐co‐propylene), Elpro, has been carried out using initiation by 60Co γ‐radiation at 298 and 273 K. The polymerizations were in bulk monomer and using the RAFT agent 1‐phenylethyl phenyldithioacetate. The rates of homopolymerization and grafting were found to decrease with increasing RAFT agent concentration, indicating that both polymerization processes involve participation of the RAFT agent. There was good agreement between the predicted and experimental molecular weights of the homopolymer that had a narrow polydispersity. The poly(t‐butyl acrylate) grafts were hydrolyzed by trifluoroacetic acid to form poly(acrylic acid) grafts, which could either be further functionalized or used to control the surface polarity of the Elpro. ATR‐FTIR spectroscopy was used to characterize the grafts and Raman spectroscopy was used to assess the depth of the grafts. The water contact angle for the Elpro surface grafted with poly(acrylic acid) was found to be linearly dependent on the amount of the graft present. The living nature of the grafted chains was demonstrated by the addition of a second block of polystyrene. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1074–1083, 2007  相似文献   

7.
A special class of engineered copolymers, called ionomers, comprising both electrically neutral repeating units and a fraction of ionized units was melt blended to weather resistant acrylonitrile/styrene/acrylate (ASA) terpolymer for improved electrical conductivity, heat sealing ability, direct adhesion to several polymers, glass and metals without affecting the aesthetics and colorability of ASA. The similar chemical nature of one of the components of each blended materials viz. acrylate rubber in ASA and acrylic acid of Na‐ionomer in addition to the presence of ionic crosslinking within Na‐ionomer, polar acrylonitrile group in ASA affects chain dynamics as compared to neat polymers. In this context, dynamic rheological properties, DMA properties, creep behavior and DSC of the newly developed ASA/Na‐ionomer blends were analyzed. Based on Na‐ionomer content, the blend system either forms “mushroom” or “brush” type conformation and formation of ionic crosslinking in “brush regime” leads to three tiers Caylay tree conformation. The different chain topology resulted into characteristic loss modulous (G″) curve during stress relaxation process. The chain conformation as well as ionic crosslinking and ion–dipole interaction between the blend components also affected DSC endotherm peak and glass transition temperature. The tan δ peak temperature from DMA also revealed the similar observation. The creep compliance of the blends was dependent on Na‐ionomer content and with temperature. The Findley model analysis of creep compliance suggested that the creep compliance was depended on Na‐ionomer content and ionic crosslinking controlled the creep. The findings can be utilized to design weather resistant smart polymer using suitable filler system. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Hydrophobic charge‐induction chromatography is a new technology for antibody purification. To improve antibody adsorption capacity of hydrophobic charge‐induction resins, new poly(glycidyl methacrylate)‐grafted hydrophobic charge‐induction resins with 5‐aminobenzimidazole as a functional ligand were prepared. Adsorption isotherms, kinetics, and dynamic binding behaviors of the poly(glycidyl methacrylate)‐grafted resins prepared were investigated using human immunoglobulin G as a model protein, and the effects of ligand density were discussed. At the moderate ligand density of 330 μmol/g, the saturated adsorption capacity and equilibrium constant reached the maximum of 140 mg/g and 25 mL/mg, respectively, which were both much higher than that of non‐grafted resin with same ligand. In addition, effective pore diffusivity and dynamic binding capacity of human immunoglobulin G onto the poly(glycidyl methacrylate)‐grafted resins also reached the maximum at the moderate ligand density of 330 μmol/g. Dynamic binding capacity at 10% breakthrough was as high as 76.3 mg/g when the linear velocity was 300 cm/h. The results indicated that the suitable polymer grafting combined with the control of ligand density would be a powerful tool to improve protein adsorption of resins, and new poly(glycidyl methacrylate)‐grafted hydrophobic charge‐induction resins have a promising potential for antibody purification applications.  相似文献   

9.
The modification of polyethylene by the grafting of poly(acrylic acid) onto the surface of one of the faces of low‐density polyethylene films with UV radiation is reported. The transport of oxygen, nitrogen, carbon monoxide, carbon dioxide, methane, ethane, ethylene, propane, and argon across surface‐modified films containing 3.7% poly(acrylic acid) has been investigated at several temperatures. The layer of poly(acrylic acid) grafted onto the surface of one of the faces of the films reduces the permeability coefficient of the gases by a factor of about 1/6. The sharp drop in the gas permeability as a result of the poly(acrylic acid) layer may arise either from the formation of ordered structures of the grafted chains or from the development of highly crosslinked structures. The values of the polymer–gas enthalpic interaction parameter for the modified film are higher than those for the unmodified one. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2828–2840, 2006  相似文献   

10.
Janus particles with differentially degradable compartments were prepared by electrohydrodynamic (EHD) co‐jetting and subsequent controlled crosslinking. These bicompartmental particles are composed of an interpenetrating polymer network of poly(ethylene oxide) and poly(acrylamide‐co‐acrylic acid) in one hemisphere and a crosslinked copolymer of dextran and poly(acrylamide‐co‐acrylic acid) segments in the second compartment. The compositional anisotropy caused differential hydrolytic susceptibility: Although both compartments were stable at pH 3.0, selective degradation of the PEO‐containing compartment pH 7.4 was observed wtihin 5 days. Janus particles with differentially degradable polymer compartments may be of interest for a range of oral drug delivery applications because of their propensity for decoupled release profiles.  相似文献   

11.
Heat shrinkability of the polymer, which depends on the elastic memory, is being utilized in various applications, mainly in the field of encapsulation. The elastic memory is introduced into the system in the form of an elastomeric phase. Here the blends of ethylene vinyl acetate and polyurethane were studied with reference to their shrinkability, introducing crosslinking in both the phases. It is found that with increase in elastomer content the shrinkage increased to a certain level and then decreased. With increase in cure time shrinkage is decreased. It is seen that high‐temperature (HT) stretched samples showed higher shrinkage than room temperature (RT) stretched one. Generally, the crystallinity of the HT stretched sample is higher than that of low‐temperature stretched sample, which is again higher than that of original sample. From high temperature differential scanning calorimetry it is found that with increase in PU content stability towards oxygen is increased and further high temperature processing decreases the initial degradation temperature but enhances the rate of degradation. From scanning electron microscopy it is seen that an HT stretched sample is more elongated than an RT stretched one. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
The surface of low density polyethylene has been grafted with glycidyl acrylate and glycidyl methacrylate by photoinitiation. ESCA measurements on the grafted surface showed a 72% coverage for glycidyl acrylate and 52% for glycidyl methacrylate after 10 min of grafting with UV irradiation. ATR–IR showed a 10 times more extensive grafting for glycidyl acrylate than for glycidyl methacrylate after 10 min of grafting, indicating reaction to deeper layers. Acetone and ethanol were used as solvents: acetone yielded slightly more grafting at the surface. The grafted surfaces were reacted with 2M solutions of aniline and propylamine in ethanol. After 4 h reaction at 60°C, with aniline 52% of the epoxy groups while for propylamine 96% of the groups were consumed, as measured with ATR–IR.  相似文献   

13.
We describe here the first example of the synthesis of 4‐arm star poly(acrylic acid) for use as a water‐soluble drag reducing agent, by applying Cu(0)‐mediated polymerization technique. High molecular weight 4‐arm star poly(tert‐butyl acrylate) (Mn = 3.0–9.0 × 105 g mol?1) was first synthesized using 4,4′‐oxybis(3,3‐bis(2‐bromopropionate)butane as an initiator and a simple Cu(0)/TREN catalyst system. Then, 4‐arm star poly(tert‐butyl acrylate) were subjected to hydrolysis using trifluoroacetic acid resulting in water‐soluble 4‐arm star poly(acrylic acid). Drag reduction test rig analysis showed 4‐arm star poly(acrylic acid) to be effective as a drag reducing agent with drag reduction of 24.3%. Moreover, 4‐arm star poly(acrylic acid) exhibited superior mechanical stability when compared with a linear poly(acrylic acid) and commercially available drag reducing polymers; Praestol and poly(ethylene oxide). The linear poly(acrylic acid), Praestol, and poly(ethylene oxide) all showed a large decrease in drag reduction of 8–12% when cycled 30 times through the drag reduction test rig while, in contrast, 4‐arm star poly(acrylic acid) demonstrated much higher mechanical stability. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 335–344  相似文献   

14.
A new type of poly(methyl acrylate)‐co‐(acrylic acid) (PMA‐AA) networks obtained by combining hydrogen bonding with controlled crosslinking exhibit full and rapid shape‐memory recovery. The structure, thermal properties, dynamical mechanical properties and shape‐memory effects of these networks were presented. High modulus ratios were achieved for the series of PMA‐AA networks based on intense self‐complementary hydrogen bonding in poly(acrylic acid) (PAA) segments. This lead to excellent shape‐memory effects with strain‐recovery ratio above 99%. Meanwhile, faster recovery speed was achieved by the synergistic effect of hydrogen bonding and controlled crosslinking compared to the linear PMA‐AA copolymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1241–1245, 2011  相似文献   

15.
Insertion poly(methyl acrylate) and poly(methyl methacrylate) were prepared from monomers adsorbed in monolayers on the surface of montmorillonite clay, both in the presence and in the absence of bifunctional crosslinkers (ethylene glycol dimethacrylate and tetramethylene glycol dimethacrylate). The insertion poly(methyl acrylate) and the crosslinked insertion poly(methyl methacrylate) and dilute-solution properties quite different from conventional polymers of these monomers, the differences including high light-scattering molecular weights combined with low viscosities, low values of the second virial coefficient, unusually large variations of the Huggins' constant k′ with the time-temperature history of the solutions, and low sedimentation velocities. These properties suggest that the insertion polymers have compact structures and are consistent with the postulate of sheetlike macromolecules. The dilute-solution properties of insertion poly(methyl methacrylate) made without crosslinker, unlike those of similarly prepared poly(methyl acrylate), were similar to those of conventional poly(methyl methacrylate). This difference in behavior is attributed to the different tendencies of the two monomers to undergo branching or crosslinking during radical polymerization.  相似文献   

16.
Photocrosslinkable poly(vinylbenzophenone)‐containing polymers were synthesized via a one‐step, Friedel–Crafts benzoylation of polystyrene‐containing starting materials [including polystyrene, polystyrene‐block‐poly(tert‐butyl acrylate), polystyrene‐block‐poly(ethylene oxide), polystyrene‐block‐poly(methyl methacrylate), and polystyrene‐block‐poly(n‐butyl acrylate)] with benzoyl trifluoromethanesulfonate as a benzoylation reagent. The use of this mild reagent (which required no added Lewis acid) permitted polymers with well‐defined compositions and narrow molecular weight distributions to be synthesized. Micelles formed from one of these benzoylated polymers, [polystyrene0.25co‐poly(vinylbenzophenone)0.75]115block‐poly(acrylic acid)14, were then fixed by the irradiation of the micelle cores with UV light. As the irradiation time was increased, the pendent benzophenone groups crosslinked with other chains in the glassy micelle cores. Dynamic light scattering, spectrofluorimetry, and Fourier transform infrared spectroscopy were all used to verify the progress of the crosslinking reaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2604–2614, 2006  相似文献   

17.
Hydrophobic‐hydrophilic monolithic dual‐phase plates have been prepared by a two‐step polymerization method for two‐dimensional thin‐layer chromatography of low‐molecular‐weight compounds, namely, several dyes. The thin 200 μm poly(glycidyl methacrylate‐co‐ethylene dimethacrylate) layers attached to microscope glass plates were prepared using a UV‐initiated polymerization method within a simple glass mold. After cutting and cleaning the specific area of the layer, the reassembled mold was filled with a polymerization mixture of butyl methacrylate and ethylene dimethacrylate and subsequently irradiated with UV light. During the second polymerization process, the former layer was protected from the UV light with a UV mask. After extracting the porogens and hydrolyzing the poly(glycidyl methacrylate‐co‐ethylene dimethacrylate) area, these two‐dimensional layers were used to separate a mixture of dyes with great difference in their polarity using reversed‐phase chromatography mode within the hydrophobic layer and then hydrophilic interaction chromatography mode along the hydrophilic area. In the latter dimension only the specific spot was developed further. Detection of the separated dyes could be achieved with surface‐enhanced Raman spectroscopy.  相似文献   

18.
Polypropylene, polystyrene, and polyethylene have been grafted with glycidyl acrylate and glycidyl methacrylate. After 5 min of grafting with UV irradiation, polystyrene was extensively grafted to 91% coverage of glycidyl acrylate according to ESCA, while polypropylene was grafted to only 50% coverage. With glycidyl acrylate the grafting depth is estimated to be 0.1 μm for PP and 0.23 μm for PS. Glycidyl methacrylate is grafted in a thinner layer than glycidyl acrylate. The stabilizers 2,4-dihydroxybenzophenone, phenyl 4-aminosalicylate, and 4-amino-2,2,6,6-tetramethylpiperidine were attached to LDPE surfaces containing grafted glycidyl acrylate by opening of the epoxide bond. The reaction between epoxide and stabilizer is diffusion controlled at high concentrations of stabilizer. UV spectroscopy on an LDPE film grafted and reacted with 2,4-dihydroxybenzophenone showed that 227 nmol stabilizer/cm2 was bound to the surface.  相似文献   

19.
Amphiphilic block copolymers composed of a hydrophilic poly(ethylene glycol) (PEG) block and a hydrophobic poly(glycidyl methacrylate) (PGMA) block were synthesized through cationic ring‐opening polymerization with PEG as the precursor. The model reactions indicated that the reactivity of the epoxy groups was higher than that of the double bonds in the bifunctional monomer glycidyl methacrylate (GMA) under the cationic polymerization conditions. Through the control of the reaction time in the synthesis of block copolymer PEG‐b‐PGMA, a linear GMA block was obtained through the ring‐opening polymerization of epoxy groups, whereas the double bond in GMA remained unreacted. The results showed that the molecular weight of the PEG precursor had little influence on the grafting of GMA, and the PGMA blocks almost kept the same length, despite the difference of the PEG blocks. In addition, the PGMA blocks only consisted of several GMA units. The obtained amphiphilic PEG‐b‐PGMA block copolymers could form polymeric core–shell micelles by direct molecular self‐assembly in water. The crosslinking of the PGMA core of the PEG‐b‐PGMA micelles, induced by ultraviolet radiation and heat instead of crosslinking agents, greatly increased the stability of the micelles. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2038–2047, 2005  相似文献   

20.
In this work, a series of biodegradable and pH‐responsive hydrogels based on polyphosphoester and poly(acrylic acid) are presented. A novel biodegradable macrocrosslinker α‐methacryloyloxyethyl ω‐acryloyl poly(ethyl ethylene phosphate) (HEMA‐PEOP‐Ac) was synthesized by first ring‐opening polymerization of the cyclic monomer 2‐ethoxy‐2‐oxo‐1,3,2‐dioxaphospholane using HEMA as the initiator and Sn(Oct)2 as catalyst, and subsequent conversion of hydroxyl into vinyl group. The hydrogels were then fabricated by the copolymerization of the macromonomer with acrylic acid, and their swelling/deswelling and degradation behaviors were investigated. The results demonstrated that the crosslinking density and pH values of media strongly influenced both the swelling ratio and the degradation rate of the hydrogels. The rheological properties of these hydrogels were also studied from which the storage modulus (G′) showed clear dependence on the crosslinking density. MTT and “live/dead” assay showed that these hydrogels were compatible to fibroblast cells, not exhibiting apparent cytotoxicity even at high concentrations. Moreover, in vitro bovine serum albumin release from these hydrogels was also investigated, and it could be found that the release profiles showed a burst effect followed by a continuous release phase, and the release rate was inversely proportional to the crosslinking density of hydrogels. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1919–1930, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号