首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A convergent and efficient transition‐metal‐free catalytic synthesis of 2‐aryl‐indoles has been developed. The interception of a highly reactive and transient aza‐ortho‐quinone methide by an acyl anion equivalent generated through N‐hetereocyclic carbene catalysis is central to this successful strategy. High yields and a wide scope as well as the streamlined synthesis of a kinase inhibitor are reported.  相似文献   

2.
3.
4.
A highly efficient majority‐rules effect of poly(quinoxaline‐2,3‐diyl)s (PQXs) bearing 2‐butoxymethyl chiral side chains at the 6‐ and 7‐positions was established and attributed to large ΔGh values (0.22–0.41 kJ mol?1), which are defined as the energy difference between P‐ and M‐helical conformations per chiral unit. A PQX copolymer prepared from a monomer derived from (R)‐2‐octanol (23 % ee) and a monomer bearing a PPh2 group adopted a single‐handed helical structure (>99 %) and could be used as a highly enantioselective chiral ligand in palladium‐catalyzed asymmetric reactions (products formed with up to 94 % ee), in which the enantioselectivity could be switched by solvent‐dependent inversion of the helical PQX backbone.  相似文献   

5.
6.
The asymmetric total synthesis of natural azasugars (+)‐castanospermine, (+)‐7‐deoxy‐6‐epi‐castanospermine, and synthetic (+)‐1‐epi‐castanospermine has been accomplished in nine to ten steps from a common chiral building block (S)‐ 8 . The method features a powerful chiral relay strategy consisting of a highly diastereoselective vinylogous Mukaiyama‐type reaction with either chiral or achiral aldehydes (≥95 % de; de=diastereomeric excess) and a diastereodivergent reduction of tetramic acids, which allows formation of three continuous stereogenic centers with high diastereoselectivities. The method also provides a flexible access to structural arrays of 5‐(α‐hydroxyalkyl)tetramic acids, such as 17/34 , and 5‐(α‐hydroxyalkyl)‐4‐hydroxyl‐2‐pyrrolidinones, such as 18 and 25/35 a . The method constitutes the first realization of the challenging chiral synthons A and D and thus of the conceptually attractive retrosynthetic analysis shown in Scheme 1 in a highly enantioselective manner.  相似文献   

7.
One stereocenter makes all the difference : The synthesis and biological evaluation of 17‐epi‐cortistatin A is reported from a common intermediate used to procure natural cortistatin A. The synthesis features a unique stereocontrolled Raney‐Ni reduction process that can be employed to reliably produce both α‐ and β‐configured D‐ring aryl steroids. Biological evaluations of these “cortalogs” are reported for the first time.

  相似文献   


8.
The first asymmetric total synthesis of (?)‐ophiodilactone A and (?)‐ophiodilactone B, isolated from the ophiuroid (Ophiocoma scolopendrina), is reported. The key features of the synthesis include the highly stereocontrolled construction of the structurally congested γ‐lactone/δ‐lactone skeleton through an asymmetric epoxidation, diastereoselective iodolactonization, and intramolecular epoxide‐opening with a carboxylic acid, and biomimetic radical cyclization of ophiodilactone A to ophiodilactone B.  相似文献   

9.
Single step : Fused bicyclic and bridged tricyclic ketals were synthesized in a single step from the reactions of easily available 4‐acyl‐1,6‐diynes with H2O and alkanols (see scheme). The highly efficient AuCl3‐catalyzed multicomponent domino reactions, involving five C ? O bond formations, can proceed in a highly regio‐ and diastereoselective manner at room temperature under air and lead to structures of high molecular complexity from simple starting materials in an atom economic way.

  相似文献   


10.
11.
Generally, amine‐catalyzed enantioselective transformations rely on chiral enamine or unsaturated iminium intermediates. Herein, we report a protocol involving dual activation by an aromatic iminium and hydrogen‐bonding. An enantioselective aza‐Michael–Henry domino reaction of 2‐aminobenzaldehydes with nitroolefins has been developed through this protocol using primary amine thiourea catalysts to provide a variety of 3‐nitro‐1,2‐dihydroquinolines in moderate yields and with up to 90 % ee. The mechanism for the catalytic enantioselective reaction was confirmed by ESI mass spectrometric detection of the reaction intermediates. The products formed are substructures found in skeletons of important biological and pharmaceutical molecules.  相似文献   

12.
13.
14.
A novel bridgehead‐substituted aza‐bicyclic framework has been designed and developed in both enantiomeric forms through an asymmetric desymmetrization reaction. Strategic exploitation of the ring strain in the aza‐bicyclic framework has been utilized for the construction of the chiral aza‐quaterenary scaffolds by selective bond fragmentation processes. Furthermore, a strategically designed precursor is employed for selective bond cleavage to initiate a cascade rearrangement for the total synthesis of the 1‐azaspirotricyclic marine alkaloids (+)‐cylindricines C, D, and E, as well as (?)‐lepadiformine A. An oxidation/retro‐aldol/aza‐Michael sequence generated three new chiral centers with the required configuration in one pot.  相似文献   

15.
Although phase‐transfer reactions catalyzed by using quaternary ammonium salts are generally believed to require base additives, we discovered that, even without any base additives, conjugate additions of 3‐substituted oxindoles to nitroolefins proceeded smoothly in the presence of lipophilic quaternary ammonium bromide under water–organic biphasic conditions. The mechanism of this novel base‐free neutral phase‐transfer reaction system is investigated and the assumed catalytic cycle is presented together with interesting effects of water and lipophilicity of the phase‐transfer catalyst. The base‐free neutral phase‐transfer reaction system can be applied to highly enantioselective conjugate addition and aldol reactions under the influence of chiral bifunctional ammonium bromides as key catalysts. The structure of the chiral ammonium enolate intermediate is discussed based on the single‐crystal X‐ray structures of relevant ammonium salts and the importance of bifunctional design of catalyst is clearly explained in the model of intermediate.  相似文献   

16.
17.
以廉价易得的异戊基溴为起始原料,以烯丙基二异松莰烷基硼烷参与的不对称烯丙基化反应和Yamaguchi酯化反应为关键步骤,实现了对(-)-(3S,6R)-3,6-二羟基-10-甲基十一酸(总收率27.5%)及其三聚体(总收率24.5%)的不对称全合成。  相似文献   

18.
Proton abstraction of Ntert‐butoxycarbonyl‐piperidine (N‐Boc‐piperidine) with sBuLi and TMEDA provides a racemic organolithium that can be resolved using a chiral ligand. The enantiomeric organolithiums can interconvert so that a dynamic resolution occurs. Two mechanisms for promoting enantioselectivity in the products are possible. Slow addition of an electrophile such as trimethylsilyl chloride allows dynamic resolution under kinetic control (DKR). This process occurs with high enantioselectivity and is successful by catalysis with substoichiometric chiral ligand (catalytic dynamic kinetic resolution). Alternatively, the two enantiomers of this organolithium can be resolved under thermodynamic control with good enantioselectivity (dynamic thermodynamic resolution, DTR). The best ligands found are based on chiral diamino‐alkoxides. Using DTR, a variety of electrophiles can be used to provide an asymmetric synthesis of enantiomerically enriched 2‐substituted piperidines, including (after Boc deprotection) the alkaloid (+)‐β‐conhydrine. The chemistry was extended, albeit with lower yields, to the corresponding 2‐substituted seven‐membered azepine ring derivatives.  相似文献   

19.
The asymmetric synthesis of dragmacidin D ( 1 ) was completed in 10 steps. Its sole stereocenter was set by using direct asymmetric alkylation enabled by a C2‐symmetric tetramine and lithium N‐(trimethylsilyl)‐tert‐butylamide as the enolization reagent. A central Larock indole synthesis was employed in a convergent assembly of the heterocyclic subunits. The stereochemical evidence from this work strongly supports the predicted S configuration at the 6′′′ position, which is consistent with other members of the dragmacidin family of natural products.  相似文献   

20.
3‐(ω′‐Alkenyl)‐substituted 5,6‐dihydro‐1H‐pyridin‐2‐ones 2 – 4 were prepared as photocycloaddition precursors either by cross‐coupling from 3‐iodo‐5,6‐dihydro‐1H‐pyridin‐2‐one ( 8 ) or—more favorably—from the corresponding α‐(ω′‐alkenyl)‐substituted δ‐valerolactams 9 – 11 by a selenylation/elimination sequence (56–62 % overall yield). 3‐(ω′‐Alkenyloxy)‐substituted 5,6‐dihydro‐1H‐pyridin‐2‐ones 5 and 6 were accessible in 43 and 37 % overall yield from 3‐diazopiperidin‐2‐one ( 15 ) by an α,α‐chloroselenylation reaction at the 3‐position followed by nucleophilic displacement of a chloride ion with an ω‐alkenolate and oxidative elimination of selenoxide. Upon irradiation at λ=254 nm, the precursor compounds underwent a clean intramolecular [2+2] photocycloaddition reaction. Substrates 2 and 5 , tethered by a two‐atom chain, exclusively delivered the respective crossed products 19 and 20 , and substrates 3 , 5 , and 6 , tethered by longer chains, gave the straight products 21 – 23 . The completely regio‐ and diastereoselective photocycloaddition reactions proceeded in 63–83 % yield. Irradiation in the presence of the chiral templates (?)‐ 1 and (+)‐ 31 at ?75 °C in toluene rendered the reactions enantioselective with selectivities varying between 40 and 85 % ee. Truncated template rac‐ 31 was prepared as a noranalogue of the well‐established template 1 in eight steps and 56 % yield from the Kemp triacid ( 24 ). Subsequent resolution delivered the enantiomerically pure templates (?)‐ 31 and (+)‐ 31 . The outcome of the reactions is compared to the results achieved with 4‐substituted 5,6‐dihydro‐1H‐pyridin‐2‐ones and quinolones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号