首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Reactions between sodium amides Na[N(SiMe3)R1] [R1 = SiMe3 (1), SiMe2Ph (2) or But (3)] and cyanoalkanes RCN (R = Ad or But) were investigated. In each case the nitrile adduct [Na{mu-N(SiMe3)2}(NCR)]2 [R = Ad (1a) or But (1b)], trans-[Na{mu-N(SiMe3)(SiMe2Ph)}(NCR)]2 [R = Ad (2a) or But (2b)], [(Na{mu-N(SiMe3)But})3(NCAd)3] (3a) or [(Na{mu-N(SiMe3)But})3(NCBut)n] [n = 3 (3b) or 2 (3c)] was isolated. The reaction of complexes 3a or 3b with benzene afforded the ketimido complex [Na{mu-N=C(Ad)(Ph)}]6.2C6H6 (4a) or [Na{mu-N=C(But)(Ph)}]6 (4b); the former was also prepared in more conventional fashion from NaPh and AdCN. The synthesis and structure of an analogue of complex 1a, [Li{mu-N(SiMe3)2}(NCAd)]2 (5a), is also presented. The compounds 1a, 1b, 2a, 2b, 3, 3b, 4a, 4b and 5a were characterised by X-ray diffraction.  相似文献   

4.
Zhou M  Gong T  Qiao X  Tong H  Guo J  Liu D 《Inorganic chemistry》2011,50(5):1926-1930
Treatment of the appropriate lithium or sodium 2,4-N,N'-disubstituted 1,3,5-triazapentadienate [RNC(R')NC(R')N(SiMe(3))M](2) (R = Ph, 2,6-(i)Pr(2)-C(6)H(3)(Dipp) or SiMe(3); R' = NMe(2) or 1-piperidino; M = Li or Na) with one or half equivalent portion of MgBr(2)(THF)(2) in Et(2)O under mild conditions furnishes in good yield the first structurally characterized molecular magnesium 2,4-N,N'-disubstituted 1,3,5-triazapentadienates [DippNC(NMe(2))NC(NMe(2))N(SiMe(3))MgBr](2) (1), [{RNC(R')NC(R')N(SiMe(3))}(2)Mg] (R = Ph, R' = NMe(2) 2; R = Ph, R' = 1-piperidino 3; R = SiMe(3), R' = 1-piperidino 4). The solid-state structure of 1 is dimeric and those of 2, 3, and 4 are monomeric. The ligand backbone NCNCN in 1 adopts a W-shaped configuration, while in 2, 3 and 4 adopts a U-shaped configuration.  相似文献   

5.
Crystal Structure of the Zinc Amide Zn[N(SiMe3)2]2 X‐ray quality crystals of Zn[N(SiMe3)2]2 (monoclinic, P21/c) are obtained by sublimation of the zinc amide Zn[N(SiMe3)2]2 at —30 °C in vacuo (300 torr). According to the result of the X‐ray structural analysis, Zn[N(SiMe3)2]2 contains an almost linear N‐Zn‐N unit with two short N‐Zn bonds.  相似文献   

6.
Reduction at ambient temperature of each of the lithium benzamidinates [Li(L(1))(tmeda)] or [{Li(L(2))(OEt(2))(2)}(2)] with four equivalents of lithium metal in diethyl ether or thf furnished the brown crystalline [Li(3)(L(1))(tmeda)] (1) or [Li(thf)(4)][Li(5)(L(2))(2)(OEt(2))(2)] (2), respectively. Their structures show that in each the [N(R(1))C(R(3))NR(2)](3-) moiety has the three negative charges largely localised on each of N, N' and R = Aryl); a consequence is that the "aromatic" 2,3- and 5,6-CC bonds of R(3) approximate to being double bonds. Multinuclear NMR spectra in C(6)D(6) and C(7)D(8) show that 1 and 2 exhibit dynamic behaviour. [The following abbreviations are used: L(1) = N(SiMe(3))C(Ph)N(SiMe(3)); L(2) = N(SiMe(3))C(C(6)H(4)Me-4)N(Ph); tmeda = (Me(2)NCH(2)-)(2); thf = tetrahydrofuran.] This reduction is further supported by a DFT analysis.  相似文献   

7.
8.
Yu X  Xue ZL 《Inorganic chemistry》2005,44(5):1505-1510
Ammonolysis of previously reported Cl-M[N(SiMe3)2]3 (M = Zr, 1a; Hf, 1b) leads to the formation of peramides H2N-M[N(SiMe3)2]3 (M = Zr, 2a; Hf, 2b) which upon deprotonation by LiN(SiMe3)2 or Li(THF)3SiPh2But yields imides Li+(THF)n{HN(-)-M[N(SiMe3)2]3} (M = Zr, 3a; Hf, 3b). One -SiMe3 group in 3a-b undergoes silyl migration from a -N(SiMe3)2 ligand to the imide =NH ligand to give Li+(THF)2{Me3SiN(-)-M[NH(SiMe3)][N(SiMe3)2]2} (M = Zr, 4a; Hf, 4b) containing an imide =N(SiMe3) ligand. The kinetics of the 3a --> 4a conversion was investigated between 290 and 315 K and was first-order with respect to 3a. The activation parameters for this silyl migration are DeltaH++ = 13.3(1.3) kcal/mol and DeltaS++ = -34(3) eu in solutions of 3a (in toluene-d8 with 1.07 M THF) prepared in situ. THF in the mixed solvent promoted the 3a --> 4a reaction. The effect of THF on the rate constants of the conversion has been studied, and the kinetics of the reaction was 3.4(0.6)th order with respect to THF. Crystal and molecular structures of H2N-Zr[N(SiMe3)2]3 (2a) and 4a-b have been determined.  相似文献   

9.
10.
The thermally stable silylene Si[(NCH(2)Bu(t))(2)C(6)H(4)-1,2] 1 undergoes oxidative addition reactions with the alkali metal silylamides MN(SiMe(3))(2)(M = Li, Na or K) to afford the new alkali metal amides MN(SiMe(3))[(1)SiMe(3)][M = Li (2), Na (3) or K (4)]. Reaction of two equivalents of 1 with LiN(R)(SiMe(3)) leads in a two-step process to the compound LiN[(1)R][(1)SiMe(3)][R = SiMe(2)Ph (5) or SiMe(3) (6)]. Alternatively, 1 reacts with 3 to afford NaN[(1)SiMe(3)](2) (7). The structures of 2-5 and are presented and the formation of 2-7 is discussed.  相似文献   

11.
H ? C Bond Cleavage in Ferrocene by Organylruthenium Complexes Cp*(Me3P)2RuCH2CMe3 ( 1 ) reacts at 85°C with ferrocene ( 2 ) by cleavage of one H? C bond in 2 to give CpFe[η5-C5H4Ru(PMe3)2Cp*] ( 3 ) (Cp = η5-C5H5; Cp* = η5-C5Me5) and neopentane. The ruthenium atom in 3 has a distorted tetrahedral geometry, the planar Cp ligands in the ferrocenyl fragment are eclipsed. Solutions of 3 in [D6]benzene or [D8]THF exhibit H? D exchange of the ferrocenyl protons. In the [D8]THF molecule only the α-deuterium atoms are exchanged. Reaction pathways for this exchange are discussed.  相似文献   

12.
13.
Das P(SiMe2)3P     
P(SiMe2)3P Li3P (produced from the elements) forms with Me2SiCl2 at 20°C in toluene the bicyclic compound P(SiMe2)3P 4 beside small amounts of ClMe2Si? P(SiMe2)2P? SiMe2Cl and traces of P4(SiMe2)6 7. 4 can be transformed into 7 by thermal treatment. With the formation of 4 the existence of a bicyclic silylphosphane is confirmed which has already been mentioned in connection with P(SiEt2)3P [1], but could not be proven until now.  相似文献   

14.
15.
16.
17.
The synthesis and characterization of (Me3Si)2AsCH2RCH2As(SiMe3)2 [R = CH2 ( 1 ), SiMe2 ( 2 )] is described. Compound 1 reacts with four equivalents of Ph2GaCl to produce (3), whose structure was deduced by use of 1H and 13C{1H} NMR spectroscopy.  相似文献   

18.
Halosilylenoids, stable at room temperature (Tsi)X(2)SiLi (Tsi=C(SiMe(3))(3), X=Br, Cl), were synthesized from the reaction of TsiSiX(3) with lithium naphthalenide. Bromosilylenoid reacted with tBuOH and MeI both at -78 degrees C and at room temperature to give (Tsi)HSiBr(2) and (Tsi)MeSiBr(2), respectively, in high yields; this clearly shows its nucleophilicity. In the reaction of bromosilylenoid with methanol, 2-propanol, and 2,3-dimethyl-1,3-butadiene, the corresponding products, (Tsi)HSi(OMe)(2), (Tsi)HSi(OiPr)Br, and bromo(Tsi)silacyclopent-3-ene, were obtained in high yields; this demonstrates its amphiphilic property, as if bromosilylene would be trapped. Chlorosilylenoid also exhibited both nucleophilic and amphiphilic properties. The (29)Si chemical shifts for (Tsi)Br(2)SiLi, (Tsi)Br(2)SiK, and (Tsi)Cl(2)SiLi were 106, 70, and 87 ppm, respectively.  相似文献   

19.
[(THF)2Na(Ph2N)2Sm{N(SiMe3)2}2], an Amido Complex of Samarium with a Sandwich-like Coordinated Sodium Ion The title compound has been prepared from Sm[N(SiMe3)2]3, NaN(SiMe3)3, and HNPh2 in THF solution forming yellow-green single crystals, which were characterized by a crystal structure determination. The complex forms an ion pair in which the sodium ion is coordinated by two THF molecules and by two phenyl groups of the diphenylamido groups in a sandwich-like fashion. The samarium atom is tetrahedrally coordinated by the four nitrogen atoms of the NPh2 and the N(SiMe3)2 ligands.  相似文献   

20.
Lube MS  Wells RL  White PS 《Inorganic chemistry》1996,35(17):5007-5014
The 1:1 mole ratio reactions of boron trihalides (BX(3)) with tris(trimethylsilyl)phosphine [P(SiMe(3))(3)] produced 1:1 Lewis acid/base adducts [X(3)B.P(SiMe(3))(3), X = Cl (1), Br (2), I (5)]. Analogous 1:1 mole ratio reactions of these boron trihalides with lithium bis(trimethylsilyl)phosphide [LiP(SiMe(3))(2)] produced dimeric boron-phosphorus ring compounds {[X(2)BP(SiMe(3))(2)](2), X = Br (3), Cl (4)}. X-ray crystallographic studies were successfully conducted on compounds 1-4. Compound 1 crystallized in the orthorhombic space group Pbca, with a = 13.420(3) ?, b = 17.044(5) ?, c = 21.731(7) ?, V = 4970.6(25) ?(3), and D(calc) = 1.229 g cm(-3) for Z = 8; the B-P bond length was 2.022(9) ?, Compound 2 crystallized in the orthorhombic space group Pbca, with a = 13.581(6) ?, b = 17.106(7) ?, c = 22.021(9) ?, V = 5116(4) ?(3), and D(calc) = 1.540 g cm(-3) for Z = 8; the B-P bond length was 2.00(2) ?. Compound 3 crystallized in the monoclinic space group P2(1)/n, with a = 9.063(5) ?, b = 16.391(8) ?, c = 9.331(4) ?, V = 1379.2(12) ?(3), and D(calc) = 1.676 g cm(-3) for Z = 2; the B-P bond length was 2.023(10) ?. Compound 4 crystallized in the monoclinic space group P2(1)/n, with a = 9.143(5) ?, b = 16.021(8) ?, c = 9.170(4) ?, V = 1342.2(11) ?(3), and D(calc) = 1.282 g cm(-3) for Z = 2; the B-P bond length was 2.025(3) ?. Thermal decomposition studies were performed on compounds 1-4, yielding colored powders with boron:phosphorus ratios greater than 1:1 and significant C and H contamination indicated by elemental analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号