首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethylene/styrene copolymerizations using Cp′TiCl2(O‐2,6‐iPr2C6H3) [Cp′ = Cp* (C5Me5, 1 ), 1,2,4‐Me3C5H2 ( 2 ), tert‐BuC5H4 ( 3 )]‐MAO catalyst systems were explored under various conditions. Complexes 2 and 3 exhibited both high catalytic activities (activity: 504–6810 kg‐polymer/mol‐Ti h) and efficient styrene incorporations at 25, 40°C (ethylene 6 atm), affording relatively high molecular weight poly (ethylene‐co‐styrene)s with unimodal molecular weight distributions as well as with uniform styrene distributions (Mw = 6.12–13.6 × 104, Mw/Mn = 1.50–1.71, styrene 31.7–51.9 mol %). By‐productions of syndiotactic polystyrene (SPS) were observed, when the copolymerizations by 1 – 3 ‐MAO catalyst systems were performed at 55, 70 °C (ethylene 6 atm, SPS 9.0–68.9 wt %); the ratios of the copolymer/SPS were affected by the polymerization temperature, the [styrene]/[ethylene] feed molar ratios in the reaction mixture, and by both the cyclopentadienyl fragment (Cp′) and anionic ancillary donor ligand (L) in Cp′TiCl2(L) (L = Cl, O‐2,6‐iPr2C6H3 or N=CtBu2) employed. Co‐presence of the catalytically‐active species for both the copolymerization and the homopolymerization was thus suggested even in the presence of ethylene; the ratios were influenced by various factors (catalyst precursors, temperature, styrene/ethylene feed molar ratio, etc.). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4162–4174, 2008  相似文献   

2.
Olefin polymerizations catalyzed by Cp′TiCl2(O‐2,6‐iPr2C6H3) ( 1 – 5 ; Cp′ = cyclopentadienyl group), RuCl2(ethylene)(pybox) { 7 ; pybox = 2,6‐bis[(4S)‐4‐isopropyl‐2‐oxazolin‐2‐yl]pyridine}, and FeCl2(pybox) ( 8 ) were investigated in the presence of a cocatalyst. The Cp*TiCl2(O‐2,6‐iPr2C6H3) ( 5 )–methylaluminoxane (MAO) catalyst exhibited remarkable catalytic activity for both ethylene and 1‐hexene polymerizations, and the effect of the substituents on the cyclopentadienyl group was an important factor for the catalytic activity. A high level of 1‐hexene incorporation and a lower rE · rH value with 5 than with [Me2Si(C5Me4)(NtBu)]TiCl2 ( 6 ) were obtained, despite the rather wide bond angle of Cp Ti O (120.5°) of 5 compared with the bond angle of Cp Ti N of 6 (107.6°). The 7 –MAO catalyst exhibited moderate catalytic activity for ethylene homopolymerization and ethylene/1‐hexene copolymerization, and the resultant copolymer incorporated 1‐hexene. The 8 –MAO catalyst also exhibited activity for ethylene polymerization, and an attempted ethylene/1‐hexene copolymerization gave linear polyethylene. The efficient polymerization of a norbornene macromonomer bearing a ring‐opened poly(norbornene) substituent was accomplished by ringopening metathesis polymerization with the well‐defined Mo(CHCMe2Ph)(N‐2,6‐iPr2C6H3)[OCMe(CF3)2]2 ( 10 ). The key step for the macromonomer synthesis was the exclusive end‐capping of the ring‐opened poly(norbornene) with p‐Me3SiOC6H4CHO, and the use of 10 was effective for this polymerization proceeding with complete conversion. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4613–4626, 2000  相似文献   

3.
Summary: A tandem catalytic system, composed of (η5‐C5H4CMe2C6H5)TiCl3 ( 1 )/MMAO (modified methyl aluminoxane) and [(η5‐C5Me4)SiMe2(tBuN)]TiCl2 ( 2 )/MMAO, was applied for the synthesis of ethylene–hex‐1‐ene copolymers with ethylene as the only monomer stock. During the reaction, 1 /MMAO trimerized ethylene to hex‐1‐ene, while 2 /MMAO copolymerized ethylene with the in situ produced hex‐1‐ene to poly(ethylene–hex‐1‐ene). By changing the catalyst ratio and reaction conditions, a series of copolymer grades with different hex‐1‐ene fractions at high purity were effectively produced.

The overall strategy of the tandem 1 / 2 /MMAO catalytic system.  相似文献   


4.
The reaction of (c‐C6H11)7Si7O9(ONa)3, prepared in situ from (c‐C6H11)7Si7O9(OH)3 ( 1 ), and MnCl2(THF)2 in THF solution resulted in formation of the novel heterobimetallic Mn/Na metallasilsesquioxane complex [(c‐C6H11)7Si7O9(O3Mn)Na(Et2O)]2·Et2O ( 2 ) which was isolated in the form of colorless crystals in 64 % yield. Similar treatment of MnCl2(THF)2 with in situ prepared (c‐C6H11)7Si7O9(OLi)3 afforded the unusual tetramanganese silsesquioxane complex [(c‐C6H11)7Si7O9(O3Mn2Br)LiBr(THF)(Et2O)]2 ( 3 ) in high yield (81 %). Both 2 and 3 were structurally characterized by single‐crystal X‐ray diffraction.  相似文献   

5.
Tandem catalysis offers a promising synthetic route to the production of linear low‐density polyethylene. This article reports the use of homogeneous tandem catalytic systems for the synthesis of ethylene/1‐hexene copolymers from ethylene stock as the sole monomer. The reported catalytic systems employ the tandem action between an ethylene trimerization catalyst, (η5‐C5H4CMe2C6H5)TiCl3 ( 1 )/modified methylaluminoxane (MMAO), and a copolymerization metallocene catalyst, [(η5‐C5Me4)SiMe2(tBuN)]TiCl2 ( 2 )/MMAO or rac‐Me2Si(2‐MeBenz[e]Ind)2ZrCl2 ( 3 )/MMAO. During the reaction, 1 /MMAO in situ generates 1‐hexene with high activity and high selectivity, and simultaneously 2 /MMAO or 3 /MMAO copolymerizes ethylene with the produced 1‐hexene to generate butyl‐branched polyethylene. We have demonstrated that, by the simple manipulation of the catalyst molar ratio and polymerization conditions, a series of branched polyethylenes with melting temperatures of 60–128 °C, crystallinities of 5.4–53%, and hexene percentages of 0.3–14.2 can be efficiently produced. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4327–4336, 2004  相似文献   

6.
Copolymerization of ethylene and styrene with the catalytic system Cp*TiMe3‐B(C6F5)3 under suitable conditions affords a new polymer having a polyethylenic backbone with 4‐phenyl‐1‐butyl branches as the main product. This unexpected result has been ascribed to the multi‐site nature of the catalytic system, containing a species able to co‐oligomerize ethylene and styrene to 6‐phenyl‐1‐hexene (which was actually identified in the polymerization mixture), and another species able to copolymerize the latter with ethylene.  相似文献   

7.
A series of titanium complexes Cp*TiCl((OCH(R)CH2)2NAr) (Cp* = C5Me5, R = H, Ar = Phenyl ( 2a) ; R = H, Ar = 2,6‐dimethylphenyl ( 2b ); R = Me, Ar = Phenyl ( 2c )) was prepared by the reaction of corresponding N,N‐diethoxylaniline derivatives, with Cp*TiCl3 in the presence of excessive triethylamine. All the titanium complexes display higher catalytic activities towards the syndiospecific polymerization of styrene in the presence of modified methylaluminoxane (MMAO) as a cocatalyst, and produce higher molecular weight polystyrenes with higher syndiotacticity and melting temperature than their mother complex Cp*TiCl3. The catalyst activities and polymer yields as well as polymer properties are considerably affected by the steric and electronic effect of the tridentate ligands. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1562–1568, 2005  相似文献   

8.
An efficient introduction of vinyl group into poly (ethylene‐co‐styrene) or poly(ethylene‐co?1‐hexene) has been achieved by the incorporation of 3,3′‐divinylbiphenyl (DVBP) in terpolymerization of ethylene, styrene, or 1‐hexene with DVBP using aryloxo‐modified half‐titanocenes, Cp′TiCl2(O?2,6‐iPr2C6H3) [Cp′ = Cp*, tBuC5H4, 1,2,4‐Me3C5H2], in the presence of MAO cocatalyst, affording high‐molecular‐weight polymers with unimodal distributions. Efficient comonomer incorporations have been achieved by these catalysts, and the content of each comonomer could be varied by its initial concentration charged. The postpolymerization of styrene was initiated from the vinyl group remained in the side chain by treatment with n‐BuLi. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2581–2587  相似文献   

9.
Monophosphine‐o‐carborane has four competitive coordination modes when it coordinates to metal centers. To explore the structural transitions driven by these competitive coordination modes, a series of monophosphine‐o‐carborane Ir,Rh complexes were synthesized and characterized. [Cp*M(Cl)2{1‐(PPh2)‐1,2‐C2B10H11}] (M=Ir ( 1 a ), Rh ( 1 b ); Cp*=η5‐C5Me5), [Cp*Ir(H){7‐(PPh2)‐7,8‐C2B9H11}] ( 2 a ), and [1‐(PPh2)‐3‐(η5‐Cp*)‐3,1,2‐MC2B9H10] (M=Ir ( 3 a ), Rh ( 3 b )) can be all prepared directly by the reaction of 1‐(PPh2)‐1,2‐C2B10H11 with dimeric complexes [(Cp*MCl2)2] (M=Ir, Rh) under different conditions. Compound 3 b was treated with AgOTf (OTf=CF3SO3?) to afford the tetranuclear metallacarborane [Ag2(thf)2(OTf)2{1‐(PPh2)‐3‐(η5‐Cp*)‐3,1,2‐RhC2B9H10}2] ( 4 b ). The arylphosphine group in 3 a and 3 b was functionalized by elemental sulfur (1 equiv) in the presence of Et3N to afford [1‐{(S)PPh2}‐3‐(η5‐Cp*)‐3,1,2‐MC2B9H10] (M=Ir ( 5 a ), Rh ( 5 b )). Additionally, the 1‐(PPh2)‐1,2‐C2B10H11 ligand was functionalized by elemental sulfur (2 equiv) and then treated with [(Cp*IrCl2)2], thus resulting in two 16‐electron complexes [Cp*Ir(7‐{(S)PPh2}‐8‐S‐7,8‐C2B9H9)] ( 6 a ) and [Cp*Ir(7‐{(S)PPh2}‐8‐S‐9‐OCH3‐7,8‐C2B9H9)] ( 7 a ). Compound 6 a further reacted with nBuPPh2, thereby leading to 18‐electron complex [Cp*Ir(nBuPPh2)(7‐{(S)PPh2}‐8‐S‐7,8‐C2B9H10)] ( 8 a ). The influences of other factors on structural transitions or the formation of targeted compounds, including reaction temperature and solvent, were also explored.  相似文献   

10.
Aryloxo‐modified half‐titanocenes, Cp′TiCl2(O‐2,6‐iPr2C6H3) [Cp′ = Cp* ( 1 ), tBuC5H4 ( 2 )], catalyze terpolymerization of ethylene and styrene with α‐olefin (1‐hexene and 1‐decene) efficiently in the presence of cocatalyst, affording high‐molecular‐weight polymers with unimodal distributions (compositions). Efficient comonomer incorporations have been achieved by these catalysts. The content of each comonomer (α‐olefin, styrene, etc.) could be controlled by varying the comonomer concentration charged, and resonances ascribed to styrene and α‐olefin repeated insertion were negligible. The terpolymerization with p‐methylstyrene (p‐MS) in place of styrene also proceeded in the presence of [PhN(H)Me2][B(C6F5)4] and AliBu3 cocatalyst, and p‐MS was incorporated in an efficient matter, affording high‐molecular‐weight polymers with uniform molecular weight distributions. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2565–2574  相似文献   

11.
A series of nickel complexes, including Ni(acac)2, (C5H5)Ni(η3‐allyl), and [NiMe4Li2(THF)2]2, that were activated with modified methylaluminoxane (MMAO) exhibited high catalytic activity for the polymerization of methyl methacrylate (MMA) but showed no catalytic activity for the polymerization of ethylene and 1‐olefins. The resulting polymers exhibited rather broad molecular weight distributions and low syndiotacticities. In contrast to these initiators, the metallocene complexes (C5H5)2Ni, (C5Me5)2Ni, (Ind)2Ni, and (Me3SiC5H4)2Ni provided narrower molecular weight distributions at 60 °C when these initiator were activated with MMAO. Half‐metallocene complexes such as (C5H5)NiCl(PPh3), (C5Me5)NiCl(PPh3), and (Ind)NiCl(PPh3) produced poly(methyl methacrylate) (PMMA) with much narrower molecular weight distributions when the polymerization was carried out at 0 °C. Ni[1,3‐(CF3)2‐acac]2 generated PMMA with high syndiotacticity. The NiR(acac)(PPh3) complexes (R = Me or Et) revealed high selectivity in the polymerization of isoprene that produced 1,2‐/3,4‐polymer at 0 °C exclusively, whereas the polymerization at 60 °C resulted in the formation of cis‐1,4‐rich polymers. The polymerization of ethylene with Ni(1,3‐tBu2‐acac)2 and Ni[1,3‐(CF3)2‐acac]2 generated oligo‐ethylene with moderate catalytic activity, whereas the reaction of ethylene with Ni(acac)2/MMAO produced high molecular weight polyethylene. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4764–4775, 2000  相似文献   

12.
Building upon our earlier results on the synthesis of electron‐precise transition‐metal–boron complexes, we continue to investigate the reactivity of pentaborane(9) and tetraborane(10) analogues of ruthenium and rhodium towards thiazolyl and oxazolyl ligands. Thus, mild thermolysis of nido‐[(Cp*RuH)2B3H7] ( 1 ) with 2‐mercaptobenzothiazole (2‐mbtz) and 2‐mercaptobenzoxazole (2‐mboz) led to the isolation of Cp*‐based (Cp*=η5‐C5Me5) borate complexes 5 a , b [Cp*RuBH3L] ( 5 a : L=C7H4NS2; 5 b : L=C7H4NOS)) and agostic complexes 7 a , b [Cp*RuBH2(L)2], ( 7 a : L=C7H4NS2; 7 b : L=C7H4NOS). In a similar fashion, a rhodium analogue of pentaborane(9), nido‐[(Cp*Rh)2B3H7] ( 2 ) yielded rhodaboratrane [Cp*RhBH(L)2], 10 (L=C7H4NS2). Interestingly, when the reaction was performed with an excess of 2‐mbtz, it led to the formation of the first structurally characterized N,S‐heterocyclic rhodium‐carbene complex [(Cp*Rh)(L2)(1‐benzothiazol‐2‐ylidene)] ( 11 ) (L=C7H4NS2). Furthermore, to evaluate the scope of this new route, we extended this chemistry towards the diruthenium analogue of tetraborane(10), arachno‐[(Cp*RuCO)2B2H6] ( 3 ), in which the metal center possesses different ancillary ligands.  相似文献   

13.
By treating cyclodextrin(CD) with methylaluminoxane (MAO such as PMAO or MMAO) or trimethylaluminium (TMA) followed by Cp2ZrCl2, CD/PMAO/Cp2ZrCl2, CD/MMAO/Cp2ZrCl2 and CD/TMA/Cp2ZrCl2 catalysts were prepared. The catalysts were analyzed by 13C-CP/MAS NMR spectrometer and ICP to examine the structure of catalyst and content of Zr and Al. Ethylene polymerization was conducted with MAO or TMA as cocatalyst. Styrene polymerization was also carried out with α-CD/MMAO/Cp*TiCl3 and α-CD/TMA/Cp*TiCl3 catalysts. While the ordinary trialkylaluminium such as TMA as well as MAO can be used as cocatalyst for ethylene polymerization, only MAO could initiate the styrene polymerization with α-CD supported catalysts.  相似文献   

14.
A series of binuclear complexes [{Cp*Ir(OOCCH2COO)}2(pyrazine)] ( 1 b ), [{Cp*Ir(OOCCH2COO)}2(bpy)] ( 2 b ; bpy=4,4′‐bipyridine), [{Cp*Ir(OOCCH2COO)}2(bpe)] ( 3 b ; bpe=trans‐1,2‐bis(4‐pyridyl)ethylene) and tetranuclear metallamacrocycles [{(Cp*Ir)2(OOC‐C?C‐COO)(pyrazine)}2] ( 1 c ), [{(Cp*Ir)2(OOC‐C?C‐COO)(bpy)}2] ( 2 c ), [{(Cp*Ir)2(OOC‐C?C‐COO)(bpe)}2] ( 3 c ), and [{(Cp*Ir)2[OOC(H3C6)‐N?N‐(C6H3)COO](pyrazine)}2] ( 1 d ), [{(Cp*Ir)2[OOC(H3C6)‐N?N‐(C6H3)COO](bpy)}2] ( 2 d ), [{(Cp*Ir)2[OOC(H3C6)‐N?N‐(C6H3)COO](bpe)}2] ( 3 d ) were formed by reactions of 1 a – 3 a {[(Cp*Ir)2(pyrazine)Cl2] ( 1 a ), [(Cp*Ir)2(bpy)Cl2] ( 2 a ), and [(Cp*Ir)2(bpe)Cl2] ( 3 a )} with malonic acid, fumaric acid, or H2ADB (azobenzene‐4,4′‐chcarboxylic acid), respectively, under mild conditions. The metallamacrocycles were directly self‐assembled by activation of C? H bonds from dicarboxylic acids. Interestingly, after exposure to UV/Vis light, 3 c was converted to [2+2] cycloaddition complex 4 . The molecular structures of 2 b , 1 c , 1 d , and 4 were characterized by single‐crystal x‐ray crystallography. Nanosized tubular channels, which may play important roles for their stability, were also observed in 1 c , 1 d , and 4 . All complexes were well characterized by 1H NMR and IR spectroscopy, as well as elemental analysis.  相似文献   

15.
Mg(n‐Bu){η2‐HC[C(Me)NMes]2} ( 2 ) (Mes = mesityl, 2,4,6‐Me3C6H2), a new β‐diketiminate‐supported magnesium alkyl, has been synthesized and structurally characterized. The X‐ray analysis of the lanthanum half‐sandwich complex Cp*La(BH4)2(THF)2 ( 1 ) (Cp* = pentamethylcyclopentadienyl; THF = tetrahydrofuran) is also reported. Complex 2 has been assessed as both alkylating agent and chain transfer agent for the lanthanum‐catalysed polymerization and coordinative chain transfer polymerization of isoprene and styrene using 1 as the pre‐catalyst. The results are compared with those for n‐butylethylmagnesium (BEM) which is traditionally used for this purpose. The 1,4‐trans stereospecific polymerization of isoprene shows a more controlled character using 2 versus BEM, and higher activities are observed for the chain transfer polymerization of styrene when 2 is used as chain transfer agent. The activity is in turn lower than that observed using BEM when 1 equiv. of magnesium compound is used for the polymerization of styrene. The combination of 1 , 2 and Al(i‐Bu)3 leads finally to a 1,4‐trans stereoselective coordinative chain transfer polymerization of isoprene, in a similar way to BEM. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Six examples of newly synthesized α,α’-bis (aryl)-2,3:5,6-bis (pentame thylene)pyridyliron complexes [2,3:5,6-{C4H8C(NAr)}2C5HN]FeCl2 (Ar = 2-(c-C5H9)-6-MeC6H3 Fe1 , 2-(c-C6H11)-6-MeC6H3 Fe2 , 2-(c-C8H15)-6-MeC6H3 Fe3 , 2-(c-C5H9)-4,6-Me2C6H2 Fe4 , 2-(c-C6H11)-4,6-Me2C6H2 Fe5 , 2-(c-C8H15)-4,6-Me2C6H2 Fe6 ; c refers as cyclic), on activation with methylalumoxane (MAO) or modified MAO (MMAO), exhibit high activities towards ethylene polymerization, producing strictly linear polyethylenes with terminal vinyl groups. The catalytic performances are systematically investigated along with various polymerization parameters as well as the microstructures of resultant polyethylenes. The steric hindrances of ortho-cycloalkyl substituents of Nimino-aryl groups significantly affect the activities of the corresponding iron precatalysts as well as the microstructures of resultant polyethylenes: higher steric hindrance the ortho-cycloalkyl substituents, higher activity the iron precatalyst, lower molecular weight the resultant polyethylenes. Experimental observations are additionally supported by the computational study. The resultant polyethylenes exhibited excellent hydrophobicity.  相似文献   

17.
6‐Benzimidazolylpyridyl‐2‐carboximidic half‐titanocene complexes, Cp′TiLCl (Cp′ = C5H5, MeC5H4, C5Me5, L = 6‐benzimidazolylpyridine‐2‐carboxylimidic, C1–C13 ), were synthesized and characterized along with single‐crystal X‐ray diffraction. The half‐titanocene chlorides containing substituted cyclopentadienyl groups, especially pentamethylcyclopentadienyl groups were more stable, while those without substituents on the cyclopentadienyl groups were easily transformed into their dimeric oxo‐bridged complexes, (CpTiL)2O ( C14 and C15 ). In the presence of excessive amounts of methylaluminoxane (MAO) or modified methylaluminoxane (MMAO), all half‐titanocene complexes showed high catalytic activities for ethylene polymerization. The substituents on the Cp groups affected the catalytic behaviors of the complexes significantly, with less substituents favoring increased activities and higher molecular weights of the resultant polyethylenes. Effects of reaction conditions on catalytic behaviors were systematically investigated with catalytic systems of mononuclear C1 and dimeric C14 . With C1 /MAO, large MAO amount significantly increases the catalytic activity, while the temperature only has a slight effect on the productivity. In the case of C14 /MAO catalytic system, temperature above 60 °C and Al/Ti value higher than 5000 were necessary to observe good catalytic activities. In both systems, higher reaction temperature and low cocatalyst amount gave the polyethylenes with higher molecular weights. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3396–3410, 2008  相似文献   

18.
A series of Me4Cp–amido complexes {[η51‐(Me4C5)SiMe2NR]TiCl2; R = t‐Bu, 1 ; C6H5, 2 ; C6F5, 3 ; SO2Ph, 4 ; or SO2Me, 5 } were prepared and investigated for olefin polymerization in the presence of methylaluminoxane (MAO). X‐ray crystallography of complexes 3 and 4 revealed very long Ti N bonds relative to the bonds of 1 . These complexes were employed for ethylene–styrene copolymerizations, styrene homopolymerizations, and propylene homopolymerizations in the presence of MAO. The productivities of the catalysts derived from 3 – 5 were much lower than the productivity of the catalyst derived from 1 for the propylene polymerizations and ethylene–styrene copolymerizations, whereas the styrene polymerization activities were much higher for the catalysts derived from 3 – 5 than for the catalyst derived from 1 . The polymerization behavior of the catalysts derived from the metallocenes 3 – 5 were more reminiscent of monocyclopentadienyl titanocene Cp′TiX3/MAO catalysts than of CpATiX2/MAO catalysts such as 1 containing alkylamido ligands. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4649–4660, 2000  相似文献   

19.
(Phosphinoamide)(cyclopentadienyl)titanium(IV) complexes of the type Cp*TiCl22-Ph2PNR) [Cp*=C5Me5; R = t-Bu (2a), R = n-Bu (2b), R = Ph (2c)] have been prepared by the reaction of Cp*TiCl3 with the corresponding lithium phosphinoamides. The structure of Cp*TiCl22-Ph2PNtBu) (2a) and Cp*TiCl22-Ph2PNPh) (2c) have been determined by X-ray crystallography. These complexes exhibited moderate catalytic activities for ethylene polymerization in the presence of modified methylaluminoxane (MMAO). Catalytic activity of up to 2.5 × 106 g/(mol Ti h) was observed when activated by i-Bu3Al/Ph3CB(C6F5)4.  相似文献   

20.
The reaction of the neutral carborane C2B9H13 with Cp*M(CH3)3 (M = Zr (a), Hf (b); Cp* = η5-C5Me5) yields [Cp(C2B9H11)M(CH3)]n (3a, b). Complexes 3a, b form THF adducts Cp*(C2B9H11)M(CH3)(THF) 4, insert 2-butyne to yield Cp*(C2B9H11)M{C(Me=CMe2} 5, and undergo methane elimination upon thermolysis to yield methylene-bridged complexes [Cp*(C2B9H11)M]2(μ-CH2) (6). These chemical studies, and companion structural and theoretical studies establish that 3a, b are neutral analogues of the cationic Cp2M(R)+ species (1; Cp = η5-C5H5) and Cp2M(R)(L)+ (2) which are believed to be active in Cp2MX2-based Ziegler catalysts. Despite the lower metal charge, 3–6 exhibit characteristic “electrophilic metal alkyl” properties including agostic M-H-C and M-H-B interactions, high insertion and intramolecular C-H activation reactivity, and high ethylene polymerization and propene oligomerization activity. These observations suggest that the key requirement for high insertion/polymerization activity in metallocene systems is high metal unsaturation (i.e. two empty metal-centered orbitals) rather than charge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号