首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dental composite filling materials are improved by incorporating nanofillers. They impart increased hardness and wear resistance to composites. In addition, they produce better polishing results than macrofillers. If the particles are sufficiently small, transparent composite pastes are obtainable, independent of the refractive index of the polymerisable monomers. In this context, organosols, non-agglomerated nanoparticles in organic liquid media, are especially interesting. Some of our own results on organosols are presented in this paper. Their relatively low viscosity enables the preparation of composites with a high filler load, thus reducing the shrinkage of the dental composite during polymerisation and improving the mechanical properties. Inorganic–organic hybrids are an attractive class of materials for dental fillings. The synthesis of different polymerisable ormocers for dental composites is reviewed in the second part. Ormocers can be applied as a polymerisable matrix, improving biocompatibility and wear resistance. Their use as inorganic fillers improves the thermodynamic compatibility of the filler with the matrix and enhances the polishability. Functionalised inorganic clusters used as new additives combine the properties of very small nanoparticulate fillers and well-designed highly functional monomers with high crosslinking capabilities. Xerogel colour pigments are advantageous alternative additives to conventional pigments. 3-D structural colour pigments, which are obtained by the self-assembly of monodisperse spherical particles, produce an opalescent effect resembling that of the natural enamel in highly aesthetic composites.  相似文献   

2.
聚苯胺/金属纳米粒子复合物的制备及性能   总被引:3,自引:0,他引:3  
李新贵  孙晋  黄美荣 《化学进展》2007,19(5):787-795
基于国内外最新研究文献及本课题组研究工作,从发展历史、制备方法、多功能性方面系统综述了近年来发展起来的聚苯胺/金属纳米粒子复合物。在聚苯胺基体中引入金属纳米粒子的方法可归纳为3大类:原位复合法、直接共混法和层层自组装法。所形成的有机聚苯胺和无机金属杂化复合物不仅能保留各自原有的特异性能,而且二组分之间还存在着相互协同作用,能够极大地提升基体聚苯胺材料的性能,电导率最高可提高100倍,电氧化催化电流最高可提高10倍。分散在聚苯胺膜中的极少量铂微粒就能使不锈钢板的腐蚀电位稳定在钝化区域。聚苯胺/金属纳米粒子复合物所表现出的突出的固有电导性、优异的反应催化性和极强的金属防腐性,使其跻身于为数不多的新型高性能复合材料之列,显示出了诱人的应用前景。  相似文献   

3.
Summary. Dental composite filling materials are improved by incorporating nanofillers. They impart increased hardness and wear resistance to composites. In addition, they produce better polishing results than macrofillers. If the particles are sufficiently small, transparent composite pastes are obtainable, independent of the refractive index of the polymerisable monomers. In this context, organosols, non-agglomerated nanoparticles in organic liquid media, are especially interesting. Some of our own results on organosols are presented in this paper. Their relatively low viscosity enables the preparation of composites with a high filler load, thus reducing the shrinkage of the dental composite during polymerisation and improving the mechanical properties. Inorganic–organic hybrids are an attractive class of materials for dental fillings. The synthesis of different polymerisable ormocers for dental composites is reviewed in the second part. Ormocers can be applied as a polymerisable matrix, improving biocompatibility and wear resistance. Their use as inorganic fillers improves the thermodynamic compatibility of the filler with the matrix and enhances the polishability. Functionalised inorganic clusters used as new additives combine the properties of very small nanoparticulate fillers and well-designed highly functional monomers with high crosslinking capabilities. Xerogel colour pigments are advantageous alternative additives to conventional pigments. 3-D structural colour pigments, which are obtained by the self-assembly of monodisperse spherical particles, produce an opalescent effect resembling that of the natural enamel in highly aesthetic composites.This revised version was published online in February 2005. In the previous version the issue was not marked as a special issue, and the issue title and the editor was missing  相似文献   

4.
田明 《高分子学报》2001,18(5):639-644
提出了以具有纳米尺寸孔径及孔壁厚度的MCM 48作为无机基体、以无机 有机原位自组装的方法形成纳米网络粒子 .研究结果表明 ,在一定实验条件下 ,有机相可进入无机相的三维孔道自组装形成立方有序结构的纳米网络复合粒子 .通过研究纳米网络粒子在极性介质和非极性介质中的分散发现 ,有机相的存在有利于纳米网络粒子的分散  相似文献   

5.
通过化学物理相互作用将不同组分进行复合可以形成各种各样的复合体系。如果体系中的组分均为无机物或以无机物为主则相应的复合体系称为无机复合体系。通过对组成、结构及形貌等进行设计与调控,可以赋予无机复合体系独特的性质和功能。常见的无机复合体系主要包括主-客体复合物、配位聚合物以及各种纳米复合体系等。这些无机复合体系的功能化对新材料及新能源的开发和利用具有重要意义。本文综述了各种新型无机复合体系的最新研究进展,总结了本课题组在无机复合体系及其功能化的设计与开发方面取得的最新结果,并对功能化的无机复合体系作为新型材料的应用进行了展望。  相似文献   

6.
A new type of inorganic-organic composite has been developed using organic monomeric or polymerizable silanes (with appropriate organic groupings like double bonds or epoxides) as monomers or in situ prepared or separately added nano-scale ceramic or metal particles. Due to the small size of the particulate phase, these composites are still highly transparent but show properties at least partially to be attributed to the inorganic phase. The introduction of special functions into these materials has been used for the fabrication of interesting functions like non-linear optical properties, low surface free energy coatings, controlled release properties or special mechanical properties (scratch resistance).  相似文献   

7.
复合生物材料的研究进展   总被引:11,自引:0,他引:11  
从力学性能的改善和降解速率的可调度等角度,总结了复合生物材料与单一组分的材料相比,在生物医学领域应用中所表现出的综合使用性能的优越性。综述了复合生物材料,特别是用于骨修复的各类有机/无机复合材料近年来的研究进展状况。提出将与人骨中磷灰石微晶类似的羟基磷灰石纳米粒子与可降解聚酯材料进行复合,能够得到具有优越骨诱导性能并且能够降解的新型骨修复材料。这方面的研究代表了有机/无机复合生物材料领域新的发展方向。  相似文献   

8.
Interphase modification of impact modified isotactic poly(propene) (IMPP)/magnesium hydroxide (Mg(OH)2) composites, via use of the reactive modifier 1,3 phenylene dimaleimide (BMI) has led to the formation of composites that have strength and toughness more than twice that of the unmodified composite. These significant improvements in properties were found (via response surface analysis, DSC and matrix extraction‐DRIFTS studies) to be due to encapsulation of the filler particles with the elastomeric poly(ethene‐co‐propene) impact modifier phase of the IMPP. Acceptable processing characteristics can be realised together with excellent mechanical properties, via judicious addition of a lubricant (a fatty acid amide/ester blend) to the formulation.  相似文献   

9.
Oriented structure, mainly controlled by processing conditions, is another efficient method of reinforcing polymer materials in addition to compounding with rigid inorganic fillers such as carbon nanotubes (CNTs). The mechanical properties of oriented polypropylene (PP)/multiwalled CNT (MWCNT) composites, which are vital to their application fields, are investigated extensively in this paper, with an aim to distinguish the contribution of MWCNTs contents from that of the oriented structure to the final performance of the composite. The results indicate that MWCNTs mainly increase the modulus of the composites by approximately 140%. The oriented structure formed during the die-drawing process contributes more to the enhancement of tensile strength, increasing up to 550%. The modulus and tensile strength can be further improved by increasing the drawing speed. Moreover, the tensile stress field in the die-drawing process can vastly improve the dispersion of the MWCNTs in the matrix, thus providing a new idea for improving the dispersion of nanofillers in the polymer matrix.  相似文献   

10.
An irradiation grafting method was applied for the modification of nanoparticles so that the latter can be added topolymeric materials for improving their mechanical performance using existing compounding techniques. The followingitems are discussed in this paper: (a) chemical interaction between the grafting monomers and the nanoparticles duringirradiation, (b) properties including modulus, yield strength, impact strength and fracture toughness of the resultantcomposites, and (c) possible morphological changes induced by the addition of nanoparticles. Though irradiation graftingpolymerization, nanoparticle agglomerates turn into a nano-composite microstructure (comprised of the nanoparticles and thegrafted, homopolymerized secondary polymer), which in turn builds up a strong interfacial interaction with the surrounding,primary polymeric matrix during the subsequent mixing procedure. Due to the fact that different grafting polymers broughtabout different nanoparticle/matrix interfacial features, microstructures and properties of the ultimate composites could thusbe tailored. It was found that the reinforcing and toughening effects of the nanoparticles on the polymer matrix can be fullybrought into play at a rather low filler loading in comparison to conventional particulate filled composites.  相似文献   

11.
Mechanical properties of low density polyethylene filled with various organic fillers were investigated. Different effect of different fillers on the properties was observed and the effect of crosslinking of these materials is also different. Fine anisotropic fillers behave similarly as inorganic fillers. The effect of crosslinking is the highest for composites containing large particulate fillers like beech wood flour. The effects are discussed in terms of mechanical behaviour and crosslinking degree determined from extraction or equilibrium swelling data. A formation of covalent bonds between the filler surface and polymeric matrix is proposed as a result of crosslinking.  相似文献   

12.
A solvothermal method has been used to prepare hybrid inorganic–organic composites with a lamellar structure in which layers of wurtzite ZnS are separated by intercalated diamine molecules. A hybrid composite prepared with diethylenetriamine has been isolated and characterised and its structure and properties compared with those of the composite prepared using ethylenediamine. Comparative structural and morphological studies of the two lamellar hybrid composites are described on the basis of powder XRD, electron and scanning probe microscopies and thermal analysis of the materials.  相似文献   

13.
Organic-inorganic polymer composites, consisting of a polyurethane organic phase and a mineral inorganic phase were prepared by the joint polymerization of the urethane oligomer with the water solution sodium silicate. The structure and the morphology of the composites, at a fixed weight fraction of the inorganic component of 20%, and of the corresponding pure polyurethane matrices were investigated by wide-angle and small-angle X-ray scattering (WAXS and SAXS, respectively). The results show similar size (5-7 nm) of the scale of heterogeneity of the composites due to the microphase separation of the rigid and the flexible blocks of the amorphous polyurethane matrix and due to the inorganic crystalline inclusions, i.e. the materials prepared are nanocomposites. The WAXS measurements indicate that the individual properties of the block inorganic component are lost in the nanocomposites, probably due to physical and chemical interactions between the two components. Water sorption from the liquid phase was studied gravimetrically in a composite and in the corresponding polyurethane. The results show high sorption capacity of the composite, due to the hydrophilicity of the inorganic phase and the elasticity of the polyurethane matrix, and allow to estimate the layer thickness of water adsorbed on the inorganic nanoparticle surface to about 20 nm, in reasonable agreement with a model adopted from the literature. WAXS and SAXS measurements on the swelled composite and the swelled-and-dried composite indicate changes in the structure of the inorganic component induced by water, which are, however, to a large extent reversible. These materials may find applications as gel electrolytes and as hydrogels in drug delivery systems.  相似文献   

14.
Recently, biocomposites have emerged as materials of great interest to the scientists and industry around the globe. Among various polymers, polylactic acid (PLA) is a popular matrix material with high potential for advanced applications. Various particulate materials and nanoparticles have been used as the filler in PLA based matrix. One of the extensively studied filler is cellulose. However, cellulose fibres, due to their hydrophilic nature, are difficult to blend with a hydrophobic polymer matrix. This leads to agglomeration and creates voids, reducing the mechanical strength of the resulting composite. Moreover, the role of the various forms of pure cellulose and its particle shape factors has not been analyzed in most of the current literature. Therefore, in this work, materials of various shapes and shape factors were selected as fillers for the production of polymer composites using Polylactic acid as a matrix to fill this knowledge gap. In particular, pure cellulose fibres (three types with different elongation coefficient) and two mineral nanocomponents: precipitated calcium carbonate and montmorillonite were used. The composites were prepared by a melt blending process using two different levels of fillers: 5% and 30%. Then, the analysis of their thermomechanical and physico-chemical properties was carried out. The obtained results were presented graphically and discussed in terms of their shape and degree of filling.  相似文献   

15.
Sustainability, eco‐efficiency, pollution prevention, industrial ecology, and green chemistry are considering platform‐based approaches to the development of the next generation of products and processes. Recently, renewable alternatives to traditional petroleum‐derived plastics have motivated recent interest in bio‐based composite materials which can contribute to the reduction of the environmental footprint. Lignin is a complex and amorphous biopolymer with a high density of functional groups and high modulus, which makes it potentially promising for material applications. In this sense, lignin can potentially be employed to improve the performance of materials and an economical alternative to convert lignin into high value‐added materials. Two different types of Kraft lignin were incorporated into polypropylene to fabricate composites with high bio‐content. In this study, polypropylene, Kraft lignin, and coupling agent were subjected to reactive extrusion. The composites prepared by melt processing were compared in terms of morphological, mechanical, and thermal characterizations. The results revealed that the incorporation of lignin into polypropylene matrix resulted in composites with properties suitable for various industrial sectors, especially those in which mechanical and thermal properties are crucial, such as the replacement of engineering plastics and polypropylene mineral filled. As a result, this work provides an effective way of using lignin as a low‐cost bio‐renewable resource in the plastics industry.  相似文献   

16.
This review provides a critical assessment of the use of cellulosic materials for reinforcement in polymer composites. The review focuses on structure–property interrelationships and the compatibilization of cellulosic materials for optimal performance of the resulting composite materials. Optimal material and physical properties are characterized on the basis of the reinforcement’s physical dimension and the nature of the interface between reinforcement and matrix. We explore how very different cellulosic materials—bacterial, microcrystalline, microfibrillated or nanocrystalline—can cause distinctly different reinforcment.  相似文献   

17.
For organic-inorganic composite materials, the spatial dispersion of inorganic fillers in the organic matrix is of great significance for designing and manufacturing high-performance composite materials. To improve the understanding of the micro-physical mechanism of the filler-reinforced polymer matrix, we studied the relationship between filler network structure and macro-mechanical properties of silicone rubber by using fluorescent labeling technology and three-dimensional (3D) visualization imaging. The experimental results showed that a good filler network structure in the polymer matrix can more effectively dissipate external mechanical energy, which generate a visible mechanical strengthening effect. Additionally, this visualization method truly reflects the macrodispersion of the filler and the evolution of the filler network structure under dynamic stress due to its non-invasive and intuitive characteristics, which provides new theoretical guidance for the design of high-performance composites.  相似文献   

18.
Facile and smart method for the modification of inorganic fibers has been developed. The polyaniline was synthesized on basalt fiber surface presenting an organic polymer shell to the inorganic fibers. The modified basalt fibers were dispersed in rubber-producing well-dispersed rubber composites. Various mass loadings of modified basalt fibers were dispersed and optimized. The effect of radiation on the properties of developed rubber composites was investigated by exposure to different gamma radiation doses. The flammability, thermal and mechanical properties were studied. The flammability of developed composites was improved achieving 62 and 16% reduction in the peak heat release rate compared to blank rubber and unmodified basalt fiber-based rubber composite, respectively. This is in addition to significant reduction in emission of CO and CO2 gases by 65 and 58%, respectively. Also, the tensile strength property was enhanced by 38 and 53% compared to blank and unmodified basalt composite, respectively. The role of polyaniline layer on inorganic fiber surface and their effect on the properties of the produced composites was studied. The organic polymer shell achieved good compatibility and interfacial adhesion of basalt fibers with rubber matrix and radiation protection effect for the developed composites.  相似文献   

19.
The dielectric properties of composite materials consisting of a host matrix filled with spherical particles are investigated as a function of frequency by means of numerical calculations. Two different cases are analyzed: (a) composites with a conductive matrix and insulating fillers and (b) composites with an insulating matrix and conductive fillers. In both situations, dielectric dispersions due to interfacial polarization effects are observed in the dielectric spectra. In the present contribution, the characteristic frequencies of interfacial polarization effects are systematically analyzed in dependence on the volume fraction of the spherical fillers and on the conductivity values of the composite phases. The resulting scaling laws are discussed in detail.  相似文献   

20.
Incorporating inorganic particles into conjugated polymer matrices is an area of current interest in the fields of optoelectronics and solar energy. The hybrid nanocomposites exhibit interesting physical properties thanks to good optical properties of polymers and to high carrier mobility of inorganic semiconductors. A judicious combination of organic/inorganic can therefore provide materials of low cost, ease processing, high stability, with specific electrical and optical properties.In the present study, we briefly review the composite materials that have been successfully utilized in the field of optoelectronics and photovoltaic conversion. We shall describe in particular a family of nanocomposites using polyhedral oligomeric silsesquioxanes (POSS) of general formula (RSiO3/2)n where R is an organic group as a core. The composites are made by grafting functional polymer groups to the core, which allows the control of their optical properties. Such composites have high mechanical resistance and stability because of the special structure of the core. For illustration, we present a study of polyfluorene (PF)/POSS materials used as an active layer in organic light emitting diodes, with improved performance as compared to those using polymer only, and we discuss the role of the particles in the transport and emission processes in the devices studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号