首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The salts 3‐[(2,2,3,3‐tetrafluoropropoxy)methyl]pyridinium saccharinate, C9H10F4NO+·C7H4NO3S, (1), and 3‐[(2,2,3,3,3‐pentafluoropropoxy)methyl]pyridinium saccharinate, C9H9F5NO+·C7H4NO3S, (2), i.e. saccharinate (or 1,1‐dioxo‐1λ6,2‐benzothiazol‐3‐olate) salts of pyridinium with –CH2OCH2CF2CF2H and –CH2OCH2CF2CF3meta substituents, respectively, were investigated crystallographically in order to compare their fluorine‐related weak interactions in the solid state. Both salts demonstrate a stable synthon formed by the pyridinium cation and the saccharinate anion, in which a seven‐membered ring reveals a double hydrogen‐bonding pattern. The twist between the pyridinium plane and the saccharinate plane in (2) is 21.26 (8)° and that in (1) is 8.03 (6)°. Both salts also show stacks of alternating cation–anion π‐interactions. The layer distances, calculated from the centroid of the saccharinate plane to the neighbouring pyridinium planes, above and below, are 3.406 (2) and 3.517 (2) Å in (1), and 3.409 (3) and 3.458 (3) Å in (2).  相似文献   

2.
The title salt, C6H12NO2+·C6H7O4 or ISO+·CBDC, is an ionic ensemble assisted by hydrogen bonds. The amino acid moiety (ISO or piperidine‐4‐carboxylic acid) has a protonated ring N atom (ISO+ or 4‐carboxypiperidinium), while the semi‐protonated acid (CBDC or 1‐carboxycyclobutane‐1‐carboxylate) has the negative charge residing on one carboxylate group, leaving the other as a neutral –COOH group. The –+NH2– state of protonation allows the formation of a two‐dimensional crystal packing consisting of zigzag layers stacked along a separated by van der Waals distances. The layers extend in the bc plane connected by a complex network of N—H...O and O—H...O hydrogen bonds. Wave‐like ribbons, constructed from ISO+ and CBDC units and described by the graph‐set symbols C33(10) and R33(14), run alternately in opposite directions along c. Intercalated between the ribbons are ISO+ cations linked by hydrogen bonds, forming rings described by the graph‐set symbols R66(30) and R42(18). A detailed analysis of the structures of the individual components and the intricate hydrogen‐bond network of the crystal structure is given.  相似文献   

3.
The structure of the title compound, [NiCu(CN)4(C10H8N2)(H2O)2]n or [{Cu(H2O)2}(μ‐C10H8N2)(μ‐CN)2{Ni(CN)2}]n, was shown to be a metal–organic cyanide‐bridged framework, composed essentially of –Cu–4,4′‐bpy–Cu–4,4′‐bpy–Cu– chains (4,4′‐bpy is 4,4′‐bipyridine) linked by [Ni(CN)4]2− anions. Both metal atoms sit on special positions; the CuII atom occupies an inversion center, while the NiII atom of the cyanometallate sits on a twofold axis. The 4,4′‐bpy ligand is also situated about a center of symmetry, located at the center of the bridging C—C bond. The scientific impact of this structure lies in the unique manner in which the framework is built up. The arrangement of the –Cu–4,4′‐bpy–Cu–4,4′‐bpy–Cu– chains, which are mutually perpendicular and non‐intersecting, creates large channels running parallel to the c axis. Within these channels, the [Ni(CN)4]2− anions coordinate to successive CuII atoms, forming zigzag –Cu—N[triple‐bond]C—Ni—C[triple‐bond]N—Cu– chains. In this manner, a three‐dimensional framework structure is constructed. To the authors' knowledge, this arrangement has not been observed in any of the many copper(II)–4,4′‐bipyridine framework complexes synthesized to date. The coordination environment of the CuII atom is completed by two water molecules. The framework is further strengthened by O—H...N hydrogen bonds involving the water molecules and the symmetry‐equivalent nonbridging cyanide N atoms.  相似文献   

4.
The title complex, [MnHg(NCS)4(C2H5NO)2]n, consists of slightly distorted MnN4O2 octa­hedra and HgS4 tetra­hedra. Each MnII cation is bound to four N atoms of the NCS groups and two O atoms of the N‐methyl­formamide (NMF) ligands in a cis configuration. Each HgII cation is coordinated to four S atoms of NCS groups. Each pair of MnII and HgII cations is connected by an –NCS– bridge, forming an infinite three‐dimensional –Mn—NCS—Hg– network.  相似文献   

5.
Rare‐earth metal complexes (Flu‐CH2‐Py)Ln(CH2SiMe3)2(THF)n (Ln=Sc( 1 ), Lu( 2 ), Tm( 3 ), Y( 4 ) and Gd( 5 )), upon the activation of [Ph3C][B(C6F5)4] and Ali Bu3, were employed to catalyze the polymerization of allene derivatives under mild conditions. The Gd, Y, Tm, Lu metal based precursors exhibited distinguished 2,3‐selectivity (>99.9 %) for phenylallene (PA) polymerization, whereas the smallest Sc metal based precursor showed a moderate 2,3‐selectivity. The activity increased with the central metal size following the trend of Gd( 5 )>Tm( 4 )>Y( 3 )>Lu( 2 )>Sc( 1 ). Moreover, Gd( 5 ) also realized the purely 2,3‐selective polymerizations of polar or nonpolar allene derivatives, para ‐methylphenylallene, para ‐flourophenylallene and para ‐methoxyphenylallene, regardless of electron‐donating or ‐withdrawing substituents. Owing to the highly regular backbones, these polymers (except PPA) were crystalline, thus being the first crystalline polymers based on allene derivatives.  相似文献   

6.
The dissolution of (perfluoroorgano)difluoroboranes RFBF2 in anhydrous HF (aHF) resulted in equilibrium mixtures of the starting borane and different kinds of acid‐base products: [H2F] [RFBF2(F · HF)] (RF = C6F5, cis‐C2F5CF=CF, trans‐C4F9CF=CF) or [H2F] [RFBF3] (RF = C6F13). In aHF the aryl compounds C6F5BF2 and K [C6F5BF3] showed two parallel reactivities with XeF2: xenodeborylation (formation of the [C6F5Xe]+ cation) and fluorine addition to the aryl group. In aHF perfluoroalk‐1‐enyldifluoroboranes RFBF2 as well as potassium perfluoroalk‐1‐enyltrifluoroborates K [RFBF3] (RF = cis‐C2F5CF=CF, trans‐C4F9CF=CF) underwent only fluorine addition across the carbon‐carbon double bond under the action of XeF2. Potassium perfluorohexyltrifluoroborate K [C6F13BF3] did not react with XeF2 in aHF.  相似文献   

7.
The optimized geometries and energies of fluorine-substituted ethylene dications C2HnF4-n 2+ (n = 0–4) have been investigated by means of ab initio methods. At the MP3/6-31G**//6-31G* + zero-point energy level of theory, the results predict that C2F42+ and C2HF32+ are planar, while C2H42+, C2H3F2+ and 1,1—C2H2F22+ prefer a perpendicular geometry. For 1,2—C2H2F22+ an energy difference of only 0.3 kcal/mol is found between the (trans) planar and perpendicular structure. The stabilizations attributed to hyperconjugation, fluorine lone-pair donation, and (C? F) double-bond conjugation are discussed. A comparison is made for the C? C and C? F stretching frequencies determined at 6-31G*//6-31G* between the neutral and dicationic species. The theoretically determined ionization energies for the vertical process N+ → N2+ at the MP3/6-31G*//3-21G level are compared with experimental Qmin values.  相似文献   

8.
The enantioselective ketimine–ene reaction is one of the most challenging stereocontrolled reaction types in organic synthesis. In this work, catalytic enantioselective ketimine–ene reactions of 2‐aryl‐3H‐indol‐3‐ones with α‐methylstyrenes were achieved by utilizing a B(C6F5)3/chiral phosphoric acid (CPA) catalyst. These ketimine–ene reactions proceed well with low catalyst loading (B(C6F5)3/CPA=2 mol %/2 mol %) under mild conditions, providing rapid and facile access to a series of functionalized 2‐allyl‐indolin‐3‐ones with very good reactivity (up to 99 % yield) and excellent enantioselectivity (up to 99 % ee). Theoretical calculations reveal that enhancement of the acidity of the chiral phosphoric acid by B(C6F5)3 significantly reduces the activation free energy barrier. Furthermore, collective favorable hydrogen‐bonding interactions, especially the enhanced N?H???O hydrogen‐bonding interaction, differentiates the free energy of the transition states of CPA and B(C6F5)3/CPA, thereby inducing the improvement of stereoselectivity.  相似文献   

9.
The Schiff base, 2–salicylidene–4–aminophenyl benzimidazole in ethanol undergoes activation of –N=CH– bond by Ni2+ in the presence of ammonia or primary alkyl amine to produce nickel complexes of the formula Ni{o–C6H4(O)CH NR}2 . n H2O [R = H, Me; n = 0; R = Et, n = 0.5] and 4–aminophenyl benzimidazole. The products have been identified by elemental analysis, magnetic susceptibility measurements and IR, ESR, mass and extensive NMR spectral studies. The possible mechanism for the activation of –N=CH – bond has also been proposed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Partially fluorinated poly(vinyl ether)s with C4F9 and C6F12H groups in the side chain were synthesized via living cationic polymerization in the presence of an added base in a fluorine‐containing solvent, dichloropentafluoropropanes. For comparison, the polymerization of vinyl ether monomers with C2F5 and C6F13 groups and nonfluorinated monomers were also carried out. The characterization of the product polymers using size exclusion chromatography with a fluorinated solvent as an eluent indicated that all polymers had narrow molecular weight distributions (Mw/Mn ~ 1.1). Interestingly, the moderately fluorinated polymers with C4F9 exhibited upper critical solution temperature‐type phase separation in various organic solvents with wide‐ranging polarities, whereas highly fluorinated polymers with C6F13 are insoluble in nonfluorinated solvents. Polymers with C4F9 groups exhibited temperature dependent solubility transitions not only in common organic solvents (e.g., toluene, chloroform, tetrahydrofuran, and acetone) but also in perfluoro solvents [e.g., perfluoro(methylcyclohexane) and perfluorodecalin]. On the other hand, the solubility of polymers with C6F12H showed completely different from that of polymers with C6F13, despite their similar fluorine content. In addition, various types of fluorinated block copolymers were prepared in a living manner. The block copolymers with a thermosensitive fluorinated segment underwent temperature‐induced micellization and sol–gel transition in various organic solvents. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
A series of new coordination polymers bearing the [B(O–C6H4–CN)4] anion was synthesized. Two new, one dimensional coordination frameworks of the type M[B(O–C6H4–CN)4] (M = Ag, Cu) were obtained by salt metathesis. The reactivity towards organic Lewis‐bases was studied. The reaction with bidentate ligands yielded two dimensional networks with the general formula [M(L)][B(O–C6H4–CN)4] {L = 2,2′‐bipyridine, 4,4′‐bipyridine, 1,2‐bis(pyridyl)ethane, 1,4‐diazabicyclo[2.2.2]octane}. The synthesis, properties and single crystal structure are reported.  相似文献   

12.
A synthesis for four‐fold negatively charged fullerides in solution is presented. Three salts containing discrete C604– anions were synthesized by the reduction of C60 in solution using rubidium‐mercury amalgams and rubidium suboxide both in the presence of elemental mercury. The three new salts, [Rb6DMF14(C6H13N2O2)2] · C60 ( 1 ), [Rb(diaza‐18‐crown‐6)]4 · C60 · (en)4.1 ( 2 ), and [Rb(benzo‐18‐crown‐6)]4 · C60 ( 3 ), were characterized by single‐crystal X‐ray diffraction. The results clearly indicate a charge of 4– for the fulleride anions. In 1 the fulleride units are ordered, and their distortion from Ih symmetry shows similarities to binary alkali metal fullerides that contain C604– anions. In the crystal structures of 2 and 3 the C604– anions show a rotational disorder. In all structures the 6:6 bond lengths within the fulleride are strongly enlarged compared to the ones in neutralC60. EPR measurements reveal a singlet state for the C604– anion.  相似文献   

13.
In the structure of bis({N‐[di­methyl(1η5‐2,3,4,6‐tetra­methyl­in­den­yl)­silyl]­cyclo­hexyl­amido‐1κN}(methyl‐3κC)‐di‐μ3‐methyl­ene‐1:2:3κ3C;1:3:3′κ3C‐tris(pentafluorophenyl‐2κC)titanium) benzene disolvate, [Me2Si(η5‐2,3,4,6‐Me4C9H2)(C6H11N)]Ti[(μ3‐CH2)Al(C6F5)3][AlMe(μ3‐CH2)]2 or [Ti2(C21H7AlF15)2(C21H31NSi)2]·2C6D6, the dimer is located on an inversion center, and the two Ti centers are linked by double Ti(μ3‐CH2)Al(C6F5)3AlMe(μ3‐CH2) heterocycles. The electron‐deficient Ti centers are further stabilized by two α‐agostic interactions between Ti and one H atom of each bridging methyl­ene group.  相似文献   

14.
The title compounds, dimethylammonium 2‐{4‐[1‐(4‐carboxymethoxyphenyl)‐1‐methylethyl]phenoxy}acetate, C2H8N+·C19H19O6, (I), and 2,2′‐[isopropylidenebis(p‐phenyleneoxy)]diacetic acid–4,4′‐bipyridine (1/1), C19H20O6·C10H8N2, (II), are 1:1 adducts of 2,2′‐[isopropylidenebis(p‐phenyleneoxy)]diacetic acid (H2L) with dimethylammonium or 4,4′‐bipyridine. The component ions in (I) are linked by N—H...O, O—H...O and C—H...O hydrogen bonds into continuous two‐dimensional layers parallel to the (001) plane. Adjacent layers are stacked via C—H...O hydrogen bonds into a three‐dimensional network with an –ABAB– alternation of the two‐dimensional layers. In (II), two H2L molecules, one bipy molecule and two half bipy molecules are linked by O—H...N hydrogen bonds into one‐dimensional chains and rectanglar‐shaped rings. They are assembled viaπ–π stacking interactions and C—H...O hydrogen bonds into an intriguing zero‐dimensional plus one‐dimensional poly(pseudo)rotaxane motif.  相似文献   

15.
Perfluoroalkytin compounds R(4−n)Sn(Rf)n (R = Me, Et, Bu, Rf = C4F9, n = 1; R = Bu, Rf = C4F9, n = 2, 3; R = Bu, Rf = C6F13, n = 1) have been synthesized, characterized by 1H, 13C, 19F and 119Sn NMR, and evaluated as precursors for the atmospheric pressure chemical vapour deposition of fluorine‐doped SnO2 thin films. All precursors were sufficiently volatile in the range 84–136 °C and glass substrate temperatures of ca 550 °C to yield high‐quality films with ca 0.79–2.02% fluorine incorporation, save for Bu3SnC6F13, which incorporated <0.05% fluorine. Films were characterized by X‐ray diffraction, scanning electron microscopy, thickness, haze, emissivity, and sheet resistance. The fastest growth rates and highest quality films were obtained from Et3SnC4F9. An electron diffraction study of Me3SnC4F9 revealed four conformations, of which only the two of lowest abundance showed close F Sn contacts that could plausibly be associated with halogen transfer to tin, and in each case it was fluorine attached to either the γ‐ or δ‐carbon atoms of the Rf chain. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
The title complex, [MnHg(SCN)4(CH4N2O)3]n, consists of slightly distorted octahedral MnN3O3 and tetrahedral HgS4 units. The MnII atom is coordinated by the O atoms of three urea mol­ecules and by the N atoms of three SCN? ions; HgII is coordinated by four S atoms from SCN? ions. Each pair of MnII and HgII atoms is connected by an –SCN– bridge, forming infinite two‐dimensional –Mn—NCS—Hg– networks.  相似文献   

17.
The synthesis and characterization of the ditopic bis(pyrazol‐1‐yl)borate ligand Li2[p‐C6H4(B(C6F5)pz2)2] is reported (pz = pyrazol‐1‐yl). Compared to the corresponding t‐butyl derivative Li2[p‐C6H4(B(t‐Bu)pz2)2], the C6F5‐substituted scorpionate is significantly more stable towards hydrolysis. Reaction of Li2[p‐C6H4(B(C6F5)pz2)2] with two equivalents of MnCl2 leads to the formation of coordination polymers {(MnCl2)2(Li(THF)3)2[p‐C6H4(B(C6F5)pz2)2]} featuring penta‐coordinate MnII ions chelated by one bis(pyrazol‐1‐yl)borate fragment and further bonded to three chloride ions. Two of the three chloride ions are also coordinated to a neighbouring MnII ion; the third chloro ligand is shared between the MnII centre and a Li(THF)3 moiety.  相似文献   

18.
In the title compound, C15H13N2+·C24H20B, the pyridyl ring of the cation makes a dihedral angle of 1.6° with the benzene ring. Each is rotated in the same direction with respect to the central –C—CH=CH—C– linkage, by 3.8 and 5.3°, respectively. The anions have a slightly distorted tetra­hedral geometry. Mol­ecular packing analysis was carried out using the packing energy portioning scheme in the program OPEC. Around each anion in the crystal structure there are eight anions, which inter­act with the central anion through C—H⋯π inter­actions. The cations are hydrogen bonded in a head‐to‐tail fashion, forming chains along [10].  相似文献   

19.
Decarboxylation reactions between the complexes cis–[PtCl2L] (L = 1, n–bis(diphenylphosphino)–ethane (n = 2, dppe), –propane (n = 3, dppp) or –butane (n = 4, dppb)) and thallium(I) pentafluorobenzoate in pyridine give cis–[PtCl(C6F5)L] and cis–[Pt(C6F5)2L] complexes in high yields with short reaction times. X–ray crystal structures of cis–[PtCl(C6F5)(dppe)] · 0.5 C5H5N, cis–[PtCl(C6F5)(dppp)], cis–[PtCl(C6F5)(dppb)] · C3H6O, cis–[Pt(C6F5)2L] (L = dppe, dppp and dppb) and the reactants cis–[PtCl2(dppp)] (as a CH2Cl2 solvate) and cis–[PtCl2(dppb)] show monomeric structures with chelating diphosphine ligands in all cases rather than dimers with bridging diphosphines. 31P NMR data are consistent with these structures in solution.  相似文献   

20.
The results of seven cocrystallization experiments of the antithyroid drug 6‐methyl‐2‐thiouracil (MTU), C5H6N2OS, with 2,4‐diaminopyrimidine, 2,4,6‐triaminopyrimidine and 6‐amino‐3H‐isocytosine (viz. 2,6‐diamino‐3H‐pyrimidin‐4‐one) are reported. MTU features an ADA (A = acceptor and D = donor) hydrogen‐bonding site, while the three coformers show complementary DAD hydrogen‐bonding sites and therefore should be capable of forming an ADA/DAD N—H...O/N—H...N/N—H...S synthon with MTU. The experiments yielded one cocrystal and six cocrystal solvates, namely 6‐methyl‐2‐thiouracil–2,4‐diaminopyrimidine–1‐methylpyrrolidin‐2‐one (1/1/2), C5H6N2OS·C4H6N4·2C5H9NO, (I), 6‐methyl‐2‐thiouracil–2,4‐diaminopyrimidine (1/1), C5H6N2OS·C4H6N4, (II), 6‐methyl‐2‐thiouracil–2,4‐diaminopyrimidine–N,N‐dimethylacetamide (2/1/2), 2C5H6N2OS·C4H6N4·2C4H9NO, (III), 6‐methyl‐2‐thiouracil–2,4‐diaminopyrimidine–N,N‐dimethylformamide (2/1/2), C5H6N2OS·0.5C4H6N4·C3H7NO, (IV), 2,4,6‐triaminopyrimidinium 6‐methyl‐2‐thiouracilate–6‐methyl‐2‐thiouracil–N,N‐dimethylformamide (1/1/2), C4H8N5+·C5H5N2OS·C5H6N2OS·2C3H7NO, (V), 6‐methyl‐2‐thiouracil–6‐amino‐3H‐isocytosine–N,N‐dimethylformamide (1/1/1), C5H6N2OS·C4H6N4O·C3H7NO, (VI), and 6‐methyl‐2‐thiouracil–6‐amino‐3H‐isocytosine–dimethyl sulfoxide (1/1/1), C5H6N2OS·C4H6N4O·C2H6OS, (VII). Whereas in cocrystal (I) an R22(8) interaction similar to the Watson–Crick adenine/uracil base pair is formed and a two‐dimensional hydrogen‐bonding network is observed, the cocrystals (II)–(VII) contain the triply hydrogen‐bonded ADA/DAD N—H...O/N—H...N/N—H...S synthon and show a one‐dimensional hydrogen‐bonding network. Although 2,4‐diaminopyrimidine possesses only one DAD hydrogen‐bonding site, it is, due to orientational disorder, triply connected to two MTU molecules in (III) and (IV).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号