首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K0.5Na0.5NbO3 powders have been directly synthesized by an alternative solid–state method. Stoichimometric mixture of ammonium niobium oxalate and C4H4O6KNa·4H2O were calcined in temperature range from 500 to 800 °C for 3 h. The precursor and calcination products were characterized with respect to stoichiometry, purity, crystalline structure, particle size and powder morphology using X–ray diffraction (XRD), X‐ray fluorescence (XRF) spectrometer, scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectra, thermogravimetric (TG) analysis, differential scanning calorimetry (DSC) and UV–Vis diffuse reflectance (UV–Vis) spectroscopy. XRD and XRF results reveal that stoichiometric K0.5Na0.5NbO3 powders could be synthesized by the method. The particle size is about 68 nm for the precursor calcined at 500 °C according to XRD data, which is in good agreement with SEM data. The average band gap energy is estimated to be 3.18 eV by UV–vis diffuse reflectance spectra. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Systematic dark electrical resistivity and Hall mobility measurements have been carried out in the temperature range 150‐400 K on n‐type GaS0.5Se0.5 layered crystals. The analysis of temperature dependent electrical resistivity and carrier concentration reveals the extrinsic type of conduction with a donor impurity level located at 0.44 eV, donor and acceptor concentrations of 3.4 ×1017 and 4.1×1016 cm‐3, respectively, and an electron effective mass of 0.41 m0. The Hall mobility is limited by the electron‐phonon short‐range interactions scattering at high temperatures combined with the ionized impurity scattering at low temperatures. The electron‐phonon short‐range interactions scattering mobility analysis reveals an electron‐phonon coupling constant of 0.25 and conduction band deformation potential of 5.57 eV/Å.  相似文献   

3.
Bismuth sodium titanate (abbreviated as BNT) based solid solution, [Bi0.5(Na1‐x‐yKxLiy)0.5]TiO3 (0 < x + y < 1) ceramics, was invented in our group. These ceramics, which are considered as new candidates for lead‐free piezoelectric materials, were prepared by conventional ceramic sintering technique. The results of X‐ray diffraction show that the ceramics possess a single perovskite phase. The relations of the sintering conditions and the microstructures of the ceramics were studied. It was found that the optimized sintering condition is at 1100‐1150 °C for 2‐3 h, the grains of the ceramics have very regular shape, and the grain size of the ceramics is in the range of 1.3‐2.2 μm. These ceramics with the compositions of high amount of K+ and low amount of Li+ have relatively large piezoelectric charge constant (d33), and can be put into practical applications. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
This study examined the potential applications of microwave dielectric properties of La(1‐2x/3)Bax(Mg0.5Sn0.5)O3 ceramics in rectenna. The La(1‐2x/3)Bax(Mg0.5Sn0.5)O3 ceramics were prepared by the conventional solid‐state method with various sintering temperatures. An apparent density of 6.62 g/cm3, a dielectric constant of 20.3, a quality factor of 51,700 GHz, and a temperature coefficient of resonant frequency of ‐78.2 ppm/K were obtained for La2.98/3Ba0.01(Mg0.5Sn0.5)O3 ceramics that were sintered at 1550 °C for 4 h. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
La3Ga5.5Ta0.5O14 (LGT) crystal was grown by using the Czochralski method. The as‐grown crystal is transparent, free from inclusions and with no cracks. Specific heat, thermal expansion, dielectric constants, transmission spectrum and optical damage threshold of LGT have been measured, and the results show general properties of LGT are similar to that of La3Ga5SiO14 (LGS) crystal. The experiment to research the Q‐switch properties of LGT has been performed and the results show LGT possesses smaller electrooptic coefficients than that of LGS and may not be an ideal material used as a Q‐switch. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
An Al/p‐AgGaTe2 polycrystalline thin film schottky barrier diode have been prepared by flash‐evaporation of p‐AgGaTe2 onto a pre‐deposited film of aluminium. The current‐voltage, capacitance‐voltage and photoresponse of the diode have been investigated. The important physical parameter such as barrier height of the fabricated diode was derived from these measurements. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Dysprosium (Dy) doped La3Ga5.5Nb0.5O14 single crystals were grown by the traditional Czochralski method along z‐axis. The structure of the crystal has been studied by X‐ray powder diffraction method, and the unit‐cell parameters are calculated to be a=8.22070 Å, c=5.12533 Å and V=299.965 Å3. The segregation coefficient of Dy3+ in La3Ga5.5Nb0.5O14 crystal was measured by X‐ray fluorescence analysis. For 1 mol% doping level in the melt, the distribution coefficient of Dy3+ was determined to be 0.341 wt%. Specific heat, thermal expansion and transmission spectrum of Dy: La3Ga5.5Nb0.5O14 single crystals have been measured. The fluorescence spectra of Dy3+: La3Ga5.5Nb0.5O14 crystals were measured at room temperature, and there were four emission transitions occurring at 479, 576, 662 and 754 nm, respectively. The fluorescent lifetimes measurement results show 1.0% Dy: La3Ga5.5Nb0.5O14 possesses shorter fluorescence decay time (303.4 μs) than does 1.0%Dy:LGS (436.12 μs). (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The semimagnetic semiconductor alloy Zn0.5Mn0.5In2Te4 was refined from an X‐ray powder diffraction pattern using the Rietveld method. This compound crystallizes in the space group I42m (Nº 121), Z = 2, with unit cell parameters a = 6.1738(1) Å, c = 12.3572(4) Å, V = 471.00(2) Å3, c / a = 2.00. This material crystallizes in a stannite‐type structure. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Electrodeposition of Pb0.5Sn0.5 alloy is carried out in a quasi‐2D electrochemical cell. As the growth proceeds the morphologies of the deposits transit from cake‐like to branched and finally to the compact morphology. We show that these morphological transitions arise from the changes in the transport mechanisms of the ions in the electrolyte cell. In addition, it is found that the current density on the growth interface can vary spontaneously due to the irregular shape of the deposit and the generation of hydrogen gas. It causes the formation of the complex microstructure with non‐uniform composition. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The structure of the semiconducting alloy Cu2Cd0.5Mn0.5GeSe4 was refined from an X‐ray powder diffraction pattern using the Rietveld method. The present alloy crystallizes in the wurtz‐stannite structure, space group Pmn21 (No 31), and unit cell parameters values of a = 8.0253(2) Å, b = 6.8591(2) Å, c = 6.5734(2) Å and V = 361.84(2) Å3. The structure exhibits a three‐dimensional arrangement of slightly distorted CuSe4, Cd(Mn)Se4 and GeSe4 tetrahedras connected by corners. © 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim  相似文献   

11.
In this study, the microwave dielectric properties of (1‐x)La(Mg0.5Sn0.5)O3‐x(Sr0.8Ca0.2)3Ti2O7 ceramic system prepared by the conventional solid‐state method have been investigated for application in mobile communication. It was found that the diffraction peaks of (1‐x)La(Mg0.5Sn0.5)O3‐x(Sr0.8Ca0.2)3Ti2O7 ceramic system shift to higher angles as x increases from 0.2 to 0.4. It was also found that the X‐ray diffraction patterns of the 0.8La(Mg0.5Sn0.5)O3‐0.2(Sr0.8Ca0.2)3Ti2O7 ceramics exhibited no significant phase difference at different sintering temperatures. The average grain size of the (1‐x)La(Mg0.5Sn0.5)O3‐x(Sr0.8Ca0.2)3Ti2O7 ceramic system decreased from 6.4 to 4.3 μm as the value of x increased from 0.2 to 0.4 sintered at 1550 °C for 4 h. The dielectric constant increased from 26.6 to 35.9 and the quality factor (Q×f) decreased from 31,600 to 23,300 GHz for (1‐x)La(Mg0.5Sn0.5)O3‐x(Sr0.8Ca0.2)3Ti2O7 ceramic system as the x value increases from 0.2 to 0.4 sintered at 1550 °C for 4 h. The average value of temperature coefficient of resonant frequency (τf) increased from ‐18 to +8 ppm/ K as the x value increases from 0.2 to 0.4. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
A synchrotron powder diffraction experiment, especially designed to shed light on the controversial problem of the crystal structure of 0.96(Bi0.5Na0.5)TiO3 – 0.04BaTiO3, is reported. The investigated material is a key component of the current international search for lead‐free ferro‐piezoelectrics. A wide angular range diffraction pattern was measured in high resolution configuration, with emphasis on trustable counting stastistics in the high‐Q interval. Cc and R3c structural models were tried as primary phases. The obtained experimental results are incompatible with the monoclinic model and clearly favor the rhombohedral symmetry.  相似文献   

13.
The structural, electrical and optical properties of AgGa(Se0.5S0.5 )2 thin films deposited by using the thermal evaporation method have been investigated as a function of annealing in the temperature range of 450–600 °C. X‐ray diffraction (XRD) analysis showed that the structural transformation from amorphous to polycrystalline structure started at 450 oC with mixed binary phases of Ga2Se3, Ga2S3, ternary phase of AgGaS2 and single phase of S. The compositional analysis with the energy dispersive X‐ray analysis (EDXA) revealed that the as‐grown film has different elemental composition with the percentage values of Ag, Ga, Se and S being 5.58, 27.76, 13.84 and 52.82 % than the evaporation source powder, and the detailed information about the stoichometry and the segregation mechanisms of the constituent elements in the structure have been obtained. The optical band gap values as a function of annealing temperature were calculated as 2.68, 2.85, 2.82, 2.83, and 2.81 eV for as‐grown, annealed at 450, 500, 550, and 600 °C samples, respectively. It was determined that these changes in the band gap are related with the structural changes with annealing. The temperature dependent conductivity measurements were carried out in the temperature range of 250‐430 K for all samples. The room temperature resistivity value of as‐grown film was found to be 0.7x108 (Ω‐cm) and reduced to 0.9x107 (Ω‐cm) following to the annealing. From the variation of electrical conductivity as a function of the ambient temperature, the activation energies at specific temperature intervals for each sample were evaluated. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Single crystals of the magnetic semiconductor CoIn0.5Cr1.5S4, belong to the system CoIn(2‐2X)Cr(2X)S4 with x = 0.75, was grown by the chemical transport method. X‐ray powder diffraction characterization by the Rietveld method indicated that CoIn0.5Cr1.5S4 crystallizes in the space group Fd‐3m, Z = 8, with a = 10.0700(6) Å and V = 1021.2(1) Å3, in a normal spinel structure. The temperature dependence of the DC magnetization suggests that the studied compound presents a ferromagnetic behavior with a Curie temperature Tc = 220 K. Sharp spin‐glass like behavior was found also. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The superstructure parameters for the Cu0.5Fe0.5Cr2S4 and Cu0.5In0.5Cr2S4 compounds have been determined by neutron and X-ray diffraction. The localized magnetic moments in different sublattices measured for Cu0.5Fe0.5Cr2S4 are equal to 3.06 ± 0.17 μB for Fe3+ ions in the A-site and 2.76 ± 0.22 μB for Cr3+ ions in the B-site (Cu+ possess no magnetic moment), which are much less than the magnetic moments for the ions in the purely ionic state.  相似文献   

16.
A new kind of 5 at% Yb‐doped Lu0.5Y0.5PO4 crystals were firstly grown by spontaneously nucleated high‐temperature solution method using lead pyrophosphate (Pb2P2O7) as the solvent. The X‐ray powder diffraction (XRPD) patterns recorded at room temperature showed the crystals possessed tetragonal xenotime structure. The polarized absorption spectra and the fluorescence spectra of Yb:LuxY1‐xPO4 were measured at room temperature, respectively. The results show that Yb:LuxY1‐xPO4 mixed crystal will be a promising laser material if the crystal size and quality is further improved.  相似文献   

17.
Refractive indices were determined of single crystals of La3Ga5SiO14 (langasite, LGS), La3Ga5.5Nb0.5O14 (langanite, LGN) and La3Ga5.5Ta0.5O14 (langataite, LGT) in the wavelength region between 0.36 μm and 2.33 μm. While phase‐matched optical second harmonic generation is not possible in LGS it occurs in the isotypic compounds LGN and LGT. Temperature‐dependent examination of the dielectric properties of LGS up to 600 °C showed anomalous behaviour. For all three substances the electro‐optic [rσijk] (“unclamped”) and the piezoelectric [dijk ] tensors were determined at room temperature. In addition, the temperature‐dependence of these properties was studied for LGS between –200 °C and +200 °C by a Jamin interferometer in combination with a modified Sénarmont compensator.  相似文献   

18.
Thin films of FeSe0.92 and FeSe0.5Te0.5 iron chalcogenide superconductors and solid solutions containing these components in different ratios have been grown on the surface of LaAlO3 (10 $\bar 1$ 2) crystals by pulsed laser deposition. Films of solid solutions have been deposited by simultaneous laser ablation from two targets of the FeSe0.92 and FeSe0.5Te0.5 stoichiometric compositions onto one substrate. An X-ray diffraction study of the film structure shows that the films grown are epitaxial and their lattice parameters regularly vary with the ratio of the deposited components, which was controllably varied by changing the ablation intensities from the targets.  相似文献   

19.
The interaction in the molten system Rb2O‐P2O5‐TiO2‐NiO was investigated at different molar ratios Rb/P = 0.5‐1.3, fixed Ti/P = 0.15, Ti/Ni = 1.0 at temperature range 1073–953 K. The conditions of formation of complex phosphates RbTi2(PO4)3, Rb2Ni0.5Ti1.5(PO4)3 and RbNiPO4 have been determined. The new phosphate Rb2Ni0.5Ti1.5(PO4)3 (space group P213, a = 9.9386(2) Å) has been obtained and investigated by the single crystal X‐ray diffraction and FTIR‐spectroscopy. It has langbeinite‐like structure, that is built up from mixed (Ni/Ti)O6‐octahedra and РО4‐tetrahedra. Rubidium atoms are located in closed cavities of 3D‐framework.  相似文献   

20.
Neutron diffraction measurements have been made on a sputtered sample of amorphous Ge0.5Te0.5. Analysis of the radial distribution function derived from Fourier inversion of the measured structure factor gives a nearest neighbor coordination number n = 2.49. This result, compared with coordination models proposed for this composition, favors the chemically ordered 3t2-3 model (where each Ge and Te atom is threefold coordinated by the other one) analogous to a-As with n = 2.78 over the 4-2 models with n > 3.20. More detailed analysis including second neighbor atoms confirms the ordered threefold a-As model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号