首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this review, we summarize recent advances in the synthesis of hybrid nanoparticles in miniemulsions since 2009. These hybrid nanoparticles include organic–inorganic, polymeric, and natural macromolecule/synthetic polymer hybrid nanoparticles. They may be prepared through encapsulation of inorganic components or natural macromolecules by miniemulsion (co)polymerization, simultaneous polymerization of vinyl monomers and vinyl-containing inorganic precursors, precipitation of preformed polymers in the presence of inorganic constituents through solvent displacement techniques, and grafting polymerization onto, from or through natural macromolecules. Characterization, properties, and applications of hybrid nanoparticles are also discussed.  相似文献   

2.
3.
Solution of polystyrene in styrene were dispersed in an aqueous gel phase comprising sodium lauryl sulfate, cetyl alcohol, and water using an emulsification process known to produce monomer droplet sizes inthe submicron size range (referred to as miniemulsion droplets). The shelf-life stabilities of these miniemulsions were studied to determine their relative droplet sizes, and the emulsions were concommitantly polymerized in an isothermal batch reaction calorimeter. The polymerization kinetics and final particle sizes produced were compared with miniemulsion and conventional emulsion polymerizations prepared using equivalent recipes without the addition of polystyrene. The results indicate that polymerization of miniemulsions prepared from polymer solutions produce significantly different kinetics than both miniemulsion and conventional emulsion polymerizations. In general, a small amount of polymer greatly increases the rate of polymerization and the final number of particles produced in the polymerization to the extent where even conventional polymerizations carried out above the critical micelle concentration of the surfactant polymerize more slowly. The results are explained by considering the system to be comprised of small, stable pre-formed monomer-swollen polymer particles which are able to efficiently capture aqueous phase radicals. This enables the system to produce a large final number of particles, similar to the initial number of pre-formed polymer particles, as opposed to miniemulsions and micelles in which only a relatively small fraction of the initial number of species (droplets or micelles) become polymer particles. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
Functional inorganic nanofillers for transparent polymers   总被引:6,自引:0,他引:6  
The integration of inorganic nanoparticles into polymers has been used for the functionalization of polymer materials with great success. Whereas in traditional polymer composites, micron sized particles or agglomerates typically cause significant light scattering hampering optical applications, in nanocomposites the particle dimensions are small enough for the production of highly transparent composites. A challenge for the generation of such materials is to develop an integrated synthesis strategy adapting particle generation, surface modification and integration inside the polymer. Surface grafting using polymerizable surfactants or capping agents allows for linking the particles to the polymer. Novel techniques such as in situ polymerization and in situ particle processing are beneficial to avoid aggregation of inorganic particles inside the polymer matrix. The functions associated with inorganic fillers are widespread. Layered silicates and related materials are nowadays commercially available for improving mechanical and barrier properties in packaging. With the availability of highly transparent materials, the focus has shifted towards optical functions such as luminescence and UV-protection in transparent polymers. IR-active fillers are used in laser-holography for transparent poly(methyl methacrylate) (PMMA) nanocomposites. Refractive index modulation and ultrahigh refractive index films were developed based on inorganic materials such as PbS. The integration of magnetic nanoparticles has a great potential for applications such as electromagnetic interference shielding and magneto-optical storage.This tutorial review will summarize functions associated with the integration of inorganic nanofillers in polymers with a focus on optical properties.  相似文献   

5.
Two types of hybrid acrylic nanoparticles based on biodegradable and biocompatible polymers, cellulose ester and poly(ε-caprolactone), were produced via miniemulsification through high-pressure homogenization. An efficient emulsification procedure was first devised to yield high-solids-content polymer–monomer waterborne miniemulsions, and the fundamental parameters governing the stability of these composite miniemulsions were assessed. In addition, strategies to control the droplet size were investigated upon varying several experimental parameters such as the interfacial tension between the organic and the aqueous phase, the organic phase viscosity and the nature/concentration of surfactant. A series of thermally initiated polymerizations were then performed to produce nanosized hybrid particles.  相似文献   

6.
Polyolefins are basic materials in the plastics. Their application is limited by their low thermostability, adhesion, hardness and other physico-mechanical properties. The following treatments are known to improve and modify polyolefin properties: the incorporation of inorganic or organic fillers with a greater hardness and rigidity into the polyolefin matrix, the grafting of functional groups to polyolefins, and crosslinking with the formation of a network structure in the polyolefin matrix. In the case of polymers and inorganic materials, the activation of their surface by the functionalizing and fixing of transition metals allows one to perform polymerization of monomers on a surface to obtain a polymer–polymer composites and a highly filled polymer–inorganic composites.  相似文献   

7.
This paper is concerned with analysis of the basic regularities of the kinetics of formation of polymers with a conjugated system. The experimentally found regularities are explained in terms of the proposed chain branched polymerization mechanism. The principal role in the chain polymerization mechanism is played by paramagnetic centers which are formed from the diamagnetic macromolecules of the polymer in the process of synthesis. The formation of paramagnetic centers is also due to the chain mechanism. It has been established that the thermal effect of the reaction leads to localized overheating of the emerging heterophase of the polymer, which has important consequences for the kinetics of polymerization and the rate of formation of paramagnetic centers.  相似文献   

8.
Inorganic polymers are relatively unexplored because the efficient formation of macromolecular chains from atoms of transition metals and main group elements has presented a synthetic challenge. Nevertheless, these materials offer exciting opportunities for accessing properties that are significantly different from and which therefore complement those available with the well‐established organic systems. Inorganic block copolymers are of particular interest for the generation of functional, nanoscale supramolecular architectures and hierarchical assemblies using self‐assembly processes. This article focuses on research in my group over the past decade, which has targeted the development of new and controlled routes to inorganic polymers and their subsequent use in forming supramolecular materials as well as studies of their properties and applications. The use of ring‐opening polymerization (ROP) and transition‐metal‐catalyzed polycondensation approaches are illustrated. Controlled ROP procedures have been developed that allow access to polyferrocene block copolymers that self‐assemble into interesting nanoscopic architectures such as cylinders and superstructures such as flowers. The future prospects for inorganic polymer science are discussed, and a growing emphasis on the study of supramolecular inorganic polymeric materials is predicted. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 179–191, 2002  相似文献   

9.
Summary.   Silicon oxide or metal oxide clusters or small particles with polymerizable organic groups covalently bonded to their surface can be copolymerized with organic monomers by various polymerization techniques. Whereas the preparation and properties of the polymers reinforced by R 8Si8O12 have already been well investigated, analogous materials with incorporated transition metal oxide clusters are only beginning to show their potential as an interesting new class of inorganic-organic hybrid polymers. In the second part of the article, approaches are reviewed in which the inorganic building block serves as an initiator for polymerization reactions. This results in materials in which the organic polymer is grafted from an inorganic core. Most work has been done with surface-modified silica particles. Free radical polymerizations and atom transfer radical polymerizations with macroinitiators are summarized. The latter method results in polymeric particles in which an inorganic core is surrounded by an organic polymer shell. A new approach is the use of polyfunctional inorganic molecules or molecular clusters as initiators. Received July 28, 2000. Accepted August 7, 2000  相似文献   

10.
Latexes of poly(n‐butyl acrylate‐co‐methyl methacrylate) [P(BA‐co‐MMA)] filled with magnesium–aluminum layered double hydroxides (MgAl‐LDHs) are synthesized using miniemulsion polymerization. Three commercial LDHs organically modified with different types of anions are used as fillers (Perkalite F100S, Perkalite A100, and Perkalite AF50) and three different types of surfactants are tested to stabilize the miniemulsions including a cationic, an anionic, and a nonionic one. Stable LDH‐containing miniemulsions are prepared with a mixture of sodium dodecyl sulfate and Triton X‐405 and the polymerizable co‐stabilizer octadecyl acrylate. They are then polymerized to yield nanocomposite latexes. Depending on the type of LDH used, the presence of the inorganic material in the reaction medium affects the polymerization kinetics. X‐ray diffraction analysis of the resulting nanocomposite films suggests exfoliation of the inorganic material. The glass transition temperature of the nanocomposites is not affected by the LDHs and the decomposition temperature of the nanocomposites determined by thermogravimetric analysis is greater than that of the pure polymer.  相似文献   

11.
In this article we describe a new method of polymerization called "vine-twining polymerization" for preparation of well-defined supramolecules, which are amylose-polymer inclusion complexes. The method was achieved by enzymatic polymerization of alpha-D-glucose-1-phosphate catalyzed by phosphorylase in the presence of various synthetic polymers such as polyethers, polyesters, poly(ester-ether), and amphiphilic block copolymer. Powder X-ray diffraction (XRD) and 1H-NMR measurements determined the structures of the products to be inclusion complexes. The XRD patterns were completely different from those of amylose and guest polymers. The 1H-NMR spectra of the products indicated that the structures were composed of amylose and guest polymers. The formation process of the inclusion complexes during the enzymatic polymerization was also evaluated. In addition, we revealed that the bulkiness of the end groups and the hydrophobicity of the guest polymers strongly affected the formation of the inclusion complexes. By means of this method of polymerization, a graft polymer having inclusion complexes as side chains was prepared. Furthermore, as an evolution of the "vine-twining polymerization," we attempted a system of parallel polymerization to form an inclusion complex of amylose with a strongly hydrophobic guest polymer.  相似文献   

12.
Liquid nanodroplets within a size range of 50 to 500 nm can easily be prepared by shearing a system containing oil, water and a surfactant. The growth of the nanodroplets can effectively be suppressed by using a strong hydrophobe as an additivie to the oil and an effective surfactant. The hydrophobe acts as an osmotic agent which stabilizes the system against Ostwald ripening. The growth of the droplets by collision is controlled by the density of the surfactant layer. Freshly prepared miniemulsions are “critically stabilized” and show a slow, but pronounced growth, whereas a miniemulsion in “equilibrium” exhibits constant droplet size on longer time scales. Polymerization of the oil droplets of such miniemulsions turns out to be very promising and extends the possibilities of classical emulsion polymerization. Since each droplet can be considered a small reactor in which polymerization reactions take place, the process allows one to create new particle structures, e.g. polyaddition reactions can take advantage of unusual monomers, the incorporation of materials which are not soluble in the continuous phase, and the formation of nanocapsules.  相似文献   

13.
Abstract

The synthesis, characterization, and development of new nanoparticle materials have both scientific and technological significance. Surface initiated polymerization (SIP) from nanoparticle surfaces involves the growth of end‐tethered polymer brushes where the length or thickness can be more than twice the radius of gyration (Rg) compared to a free polymer in solution. Different mechanisms are possible on a variety of initiators, reaction conditions, monomers, and nanoparticles. Important differences to solution and bulk polymerization can be observed where the nanoparticles with grafted initiators behave as macroinitiators. In turn, the development of these materials will allow the preparation of thermodynamically and kinetically stable nanocomposites and colloids. Through the careful use of surface sensitive spectroscopic and microscopic techniques, much has been gained from the direct and in‐situ analysis of grafted polymers on the nanoparticles with regards to the kinetics and mechanism of the polymerization process. Parallels can be drawn to SIP on flat surfaces where surface sensitive spectroscopic and microscopic measurements are complementary to analysis methods for colloidal particles. Thus, this review surveys the different polymerization mechanisms and procedures towards forming core‐shell types of hybrid inorganic–organic polymer nanoscale materials.  相似文献   

14.
The miniemulsions process represents a versatile tool for the formation of polymeric nanoparticles consisting of different kinds of polymer as obtained by a variety of polymerization types ranging from radical, anionic, cationic, enzymatic polymerization to polyaddition, and polycondensation. The process perfectly allows the encapsulation of hydrophilic and hydrophobic liquids and solids in polymeric shells, molecularly dissolved dyes or other components. In combination with a specific functionalization of the nanoparticles' or nanocapsules' surfaces and the possibility to release substances in a defined way from the interior, complex nanoparticles or nanocapsules are obtained, which are ideally suited for application in biomedical application as marker and targeted drug‐delivery system. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 493–515, 2010  相似文献   

15.
Polyester nanocomposites were prepared using sol–gel precursors, prehydrolyzed sols, or nanoparticles in polyester formulations. The different inorganic components were introduced in the early stages of the esterification reaction and a typical polymerization temperature program was applied leading to temperatures up to 240 °C at low pressures. The structural and physical properties of the final materials depend on the applied method for the introduction of the sol–gel materials. Silicon atoms were incorporated into the polyester chain if silicon tetraalkoxide was used as precursor. The silicon atoms represent branching points in the polymer structure. Prehydrolyzed sols that were prepared under acidic conditions were another source of silicon and formed larger inorganic aggregates in the polymer matrix. Nanoparticles prepared via the Stöber process were the third inorganic species in polyester formation. All three processing pathways produced different kinds of materials depending on the type of silica incorporated in the polyester networks but also with regard to the nanoscale structure of the materials. Both, composition and structure have a major influence on the final polyester nanocomposite properties. Model reactions between silicon tetraalkoxides and diols or diacids using the temperature program for the polyester formation showed that exchange reactions of the alkoxides and the alcohols or acids can occur and the obtained products can carry out side reactions in the polyester formation. The final materials show a homogeneous distribution of the silicon containing moieties in the polyester matrix. The viscosities and the branching degrees of the polymers changed dramatically compared to the pristine polymers by incorporation of the sol–gel precursors.  相似文献   

16.
微乳液聚合   总被引:9,自引:0,他引:9  
介绍了微乳化工艺和助乳化剂对单体液滴大小、乳化剂的吸附、乳液稳定性、聚合动力学和乳胶粒子大小及分布的影响,并讨论了单体亚微液滴成核机理。  相似文献   

17.
Mechanical initiation of polymerization offers the chance to generate polymers in new environments using an energy source with unique capabilities. Recently, a renewed interest in mechanically controlled polymerization has yielded many techniques for controlled radical polymerization by ultrasound. However, other types of polymerizations induced by mechanical activation are rare, especially for generating high‐molecular‐weight polymers. Herein is an example of using piezoelectric ZnO nanoparticles to generate free‐radical species that initiate chain‐growth polymerization and polymer crosslinking. The fast generation of high amounts of reactive radicals enable the formation of polymer/gel by ultrasound activation. This chemistry can be used to harness mechanical energy for constructive purposes in polymeric materials and for controlled polymerizations for bulk‐scale reactions.  相似文献   

18.
Inverse emulsion polymerization confers the benefits of emulsion polymerization kinetics — rapid polymerization rates combined with high polymer molecular weights — on water-soluble polymers, particularly polyacrylamide and its copolymers and derivatives, and allows easy dissolution of the polymer in water by inversion of the latex. The mechanism and kinetics of the inverse emulsion polymerization of acrylamide in o-xylene containing Tetronic 1102 emulslfier and benzoyl peroxide initiator are described, particularly the formation of 10-200nm multiple emulsion droplets resulting from the particulate emulsifier, and their effect on the polymerization process  相似文献   

19.
Free-radical polymerization inside mesoporous silica has been investigated in order to open a route to functional polymer-silica composite materials with well-defined mesoporosity. Various vinyl monomers, such as styrene, chloromethyl styrene, 2-hydroxyethyl methacrylate, and methacrylic acid, were polymerized after impregnation into mesoporous silicas with various structures, which were synthesized using polyalkylene oxide-type block copolymers. The location of the polymers was systematically controlled with detailed structures of the silica framework and the polymerization conditions. Particularly noteworthy is the polymer-silica composite structure obtained by in situ polymerization after the selective adsorption of monomers as a uniform film on silica walls. The analysis of XRD data and the N(2) adsorption isotherms indicates the formation of uniform polymer nanocoating. The resultant polymer-silica composite materials can easily be post-functionalized to incorporate diverse functional groups in high density, due to the open porous structure allowing facile access for the chemical reagent. The fundamental characteristics of the composite materials are substantiated by testing the biomolecule's adsorption capacity and catalytic reactivity. Depending on the structure and composition of polymers, the resultant polymer-silica composite materials exhibit notably distinct adsorption properties toward biomolecules, such as proteins. Furthermore, it is demonstrated that the nanocoatings of polymers deposited on the mesopore walls have remarkably enhanced catalytic activity and selectivity, as compared to that of bulk polymer resins. We believe that, due to facile functionalization and attractive textural properties, the mesoporous polymer-silica composite materials are very useful for applications, such as adsorption, separation, host-guest complexes, and catalysis.  相似文献   

20.
A universal method for the synthesis of water‐based inorganic–polymer hybrid particles was developed in which no organic solvent is required. To demonstrate the versatility of this process, zinc phosphate, calcium carbonate, and barium sulfate were chosen as different pigment examples which additionally can be utilized for functional coating applications. Furthermore, a complex polymeric composition based on epoxy–acrylic–styrene was chosen to illustrate the versatility from a soft matter point of view. The overall synthesis process was carried out by coemulsification of two inverse miniemulsions, containing two precursors, surrounded with a polymerizable continuous phase. This was then transferred to a direct miniemulsion by addition to a surfactant solution and subsequent homogenization followed by radical polymerization of the vinylic monomers. To our knowledge, this is the first work where a polymerizable continuous phase has been used in an inverse miniemulsion formation followed by transfer to a direct miniemulsion, followed by polymerization, so that the result is a water‐based dispersion. The resultant dispersion was characterized by dynamic light scattering; the particles were investigated via transmission electron microscopy with in situ determination of crystallinity using electron diffraction. Elemental analysis was also performed for the particles and the polymerized miniemulsions using X‐ray fluorescence and inductively coupled plasma‐optical emission spectroscopy, respectively. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号