首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nature has developed a remarkable strategy to isolate metabolites from the milieu of the cell for chemical modification through the use of carrier proteins. Common to both primary and secondary metabolic pathways, acyl-carrier proteins constitute a conserved protein architecture which mediate the biosynthesis of a variety of metabolic products. Analogies have been made between the carrier protein and solid phase resin for chemical synthesis, as both entities provide a mechanism to separate compounds of interest from complex mixtures for selective chemical modification. However, there is significantly more to the carrier protein than an attachment point. In this review, we aim to systematically characterize the role of carrier proteins in various metabolic pathways and outline their utility in biosynthesis and biotechnology; 185 references are cited.  相似文献   

2.
The Food and Drug Administration (FDA) is facing a flurry of new products coming to market over the next few years that will be based on biotechnology. The agency will have to deal with state-of-the-art drugs and devices utilizing biotechnology as the developmental base. Also, many universities and companies are exploring the potential uses of biotechnology in developing new foods and food additives. This article will examine how the FDA is presently regulating medical device, and food and food additive biotechnology and the challenges confronting the agency in these areas in the future.  相似文献   

3.
The use of light to control chemical and biological systems with the advantages of high speed and spatiotemporal precision offers many intriguing possibilities. The field of photoresponsive molecular switches for biotechnology is emerging as a fascinating area of research for their great potential in biomedical applications as smart triggers. Here recent development of photoresponsive molecular switches for biotechnology is reviewed, where the fabrication, physicochemical properties and applications in biotechnology are highlighted, especially focused on controlling the immobilization of biomolecules on surfaces and the conformation of biomolecules by the photoswitches.  相似文献   

4.
王夔 《化学进展》2003,15(5):428-435
在细胞和固体表面建立的生物界面上发生的化学-生物学过程是一个医学、环境、农业和生物技术共同面对的问题.以破骨细胞介导的骨再吸收过程为例阐述过程中的生物事件顺序,提出有待解决的化学问题.  相似文献   

5.
生物反应与产物分离组合技术的研究进展   总被引:2,自引:0,他引:2  
李寅  陈坚  郁明 《化学进展》1997,9(3):283-290
生物反应与产物分离过程相组合, 是近10 年来出现的一类用以提高生物反应过程性能和效率的新技术。本文综述了近年来将这一技术应用于乙醇、丙酮、丁醇、有机酸、氨基酸等传统发酵产品及其它高附加值产品生产的研究进展, 以期为国内大力开展这方面的技术研究提供参考。  相似文献   

6.
土壤-植物系统中的汞污染与农产品安全生产   总被引:5,自引:0,他引:5  
对农产品的汞污染及其安全生产问题作了综述,内容包括:汞在土壤.植物系统中的循环,汞污染对农产品安全生产的威胁与对策措施,例如,可利用植物生物技术选育低积累汞的作物基因型、采取植物修复及相应的农艺措施,以进行有效的农产品安全生产与调控,减小环境中过量的汞对土壤.植物系统和食物链造成的危害,最终保障人体的健康。  相似文献   

7.
Actinobacterial natural products showed a critical basis for the discovery of new antibiotics as well as other lead secondary metabolites. Varied environmental and physiological signals touch the antibiotic machinery that faced a serious decline in the last decades. The reason was exposed by genomic sequencing data, which revealed that Actinomycetes harbor a large portion of silent biosynthetic gene clusters in their genomes that encrypt for secondary metabolites. These gene clusters are linked with a great reservoir of yet unknown molecules, and arranging them is considered a major challenge for biotechnology approaches. In the present paper, we discuss the recent strategies that have been taken to augment the yield of secondary metabolites via awakening these cryptic genes in Actinomycetes with emphasis on chemical signaling molecules used to induce the antibiotics biosynthesis. The rationale, types, applications and mechanisms are discussed in detail, to reveal the productive path for the unearthing of new metabolites, covering the literature until the end of 2020.  相似文献   

8.
Rapid growth of chemical and biotechnology in diversified areas fuels the demand for the need of reliable green technologies for the down stream processes, which include separation, purification and isolation of the molecules. Ion-exchange membrane technologies are non-hazardous in nature and being widely used not only for separation and purification but their application also extended towards energy conversion devices, storage batteries and sensors etc. Now there is a quite demand for the ion-exchange membrane with better selectivities, less electrical resistance, high chemical, mechanical and thermal stability as well as good durability. A lot of work has been done for the development of these types of ion-exchange membranes during the past twenty-five years. Herein we have reviewed the preparation of various types of ion-exchange membranes, their characterization and applications for different electro-membrane processes. Primary attention has been given to the chemical route used for the membrane preparation. Several general reactions used for the preparation of ion-exchange membranes were described. Methodologies used for the characterization of these membranes and their applications were also reviewed for the benefit of readers, so that they can get all information about the ion-exchange membranes at one platform. Although there are large number of reports available regarding preparations and applications of ion-exchange membranes more emphasis were predicted for the usefulness of these membranes or processes for solving certain type of industrial or social problems. More efforts are needed to bring many products or processes to pilot scale and extent their applications.  相似文献   

9.
White biotechnology is a fast emerging area that concerns itself with the use of biotechnological approaches in the production of bulk and fine chemicals, biofuels, and agricultural products. It is a truly multidisciplinary area and further progress depends critically on the role of chemists. This article outlines the emerging contours of white biotechnology and encourages chemists to take up some of the challenges that this area has thrown up.  相似文献   

10.
Glycosylation patterns in antibodies critically determine biological and physical properties but their precise control is a significant challenge in biology and biotechnology. We describe herein the optimization of an endoglycosidase‐catalyzed glycosylation of the best‐selling biotherapeutic Herceptin, an anti‐HER2 antibody. Precise MS analysis of the intact four‐chain Ab heteromultimer reveals nonspecific, non‐enzymatic reactions (glycation), which are not detected under standard denaturing conditions. This competing reaction, which has hitherto been underestimated as a source of side products, can now be minimized. Optimization allowed access to the purest natural form of Herceptin to date (≥90 %). Moreover, through the use of a small library of sugars containing non‐natural functional groups, Ab variants containing defined numbers of selectively addressable chemical tags (reaction handles at Sia C1) in specific positions (for attachment of cargo molecules or “glycorandomization”) were readily generated.  相似文献   

11.
Opportunities in the industrial biobased products industry   总被引:6,自引:0,他引:6  
Approximately 89 million metric to forganic chemicals and lubricants, the majority of which are fossil based, are produced annually in the United States. The development of new industrial bioproducts, for production in stand-alone facilities or biorefineries, has the potential to reduce our dependence on imported oil and improve energy security. Advances in biotechnology are enabling the optimization of feedstock composition and agronomic characteristics and the development of new and improved fermentation organisms for conversion of biomass to new end products or intermediates. This article reviews recent biotechnology efforts to develop new industrial bioproducts and improve renewable feedstocks and key market opportunities.  相似文献   

12.
This tutorial review describes a new class of data processing system that applies information theory at the molecular level. We also summarize the recent multidisciplinary advances in biotechnology and nanotechnology that have facilitated the development of reliable nano-level code systems. After a brief introduction of information theory, we present possible ways to adapt this concept to the molecular world. This review explains the requirements and solutions for each step necessary to apply a nano code system to real products. Finally, we introduce a designed nano code system for agricultural products as one example of the many possible applications for nano codes.  相似文献   

13.
Cheese making and fondue making are among the earliest applications of chemistry to biotechnology. The history and chemistry of dairy products, cheese making, and fondue are discussed, and detailed directions for preparation of Swiss cheese fondue are given.  相似文献   

14.
In any single day, our immune systems are exposed to thousands of different proteins from the environment and the food we eat. In a portion of the human population, some of those proteins will stimulate the immune systems to synthesize immunoglobulin E in an allergenic response. The discrepancy between the vast numbers of proteins we encounter and the limited number of proteins that actually become allergens have led scientists on a quest to discover what unique features exist that make proteins destined to be allergens. The information gained from these studies has led to an allergy assessment strategy that characterizes the potential allergenicity of biotechnology products prior to their commercialization. This testing strategy appears to be effective as shown by the fact that there have been no clinically documented food allergic reactions to any of the biotechnology proteins introduced into food crops, to date. The next generation of biotechnology products will most likely contain more complex traits, including nutritionally enhanced food crops, and the question arises as to whether the current allergy assessment strategy will be sufficient to protect the health of the consuming public. In this paper, we discuss general allergen characteristics in order to better understand how proteins become allergens, summarize the current allergy assessment process, evaluate the different aspects of this process for their adequacy in determining the allergenic potential of engineered functional foods, and, finally, we assess the possibility of new technologies having a positive impact on the allergy assessment of nutritionally enhanced crops.  相似文献   

15.
Biotechnology is one of the leading fields both in research and in industry. Tremendous effort has been made during the last two decades. However, biotechnology is much older than a few decades. Classical biotechnological products and processes are used from mankind over more than 5000 years. This article reflects the historical development of biotechnology — starting from the Egypt breweries over the production of indigo and saltpetre in the middle age to the discoveries of Pasteur, Fleming and Weizmann.  相似文献   

16.
The microbial production of 1,3‐propanediol is a success story for modern biotechnology. Once a specialty chemical, 1,3‐propanediol has risen to a bulk chemical within a few years. The interest in 1,3‐propanediol as a new commodity chemical is due to its use as a starting material for novel polymers with excellent physical and chemical properties. With the introduction of a new biotechnological production process, 1,3‐propanediol can be made at a competitive price from renewable resources with the aid of genetically modified E. coli bacteria. The development of the recombinant E. coli strain took more than 7 years and 36 genes had to be altered in order to enable the production of 1,3‐propanediol. In addition, the transformation of glycerol to 1,3‐propanediol could be the solution for the gycerol problem of biodiesel production.  相似文献   

17.
Analytical methods and systems for biotechnological applications are becoming increasingly important. The development of these methods and systems ask for an interdisciplinary approach. The use of analytical methods and systems in daily practice in biotechnological research, development, application and industrial production is essential for progress in biotechnology. Analytical methods and systems are not solely used for monitoring of research, development and production of biotechnological products but also goal in itself being used in many applications like medical, environmental, etc. This lecture presents an overview of current progress in Analytical Chemistry in relation to biotechnology. Special selected items have been treated into more detail.  相似文献   

18.
Based on fundamental chemistry, biotechnology and materials science have developed over the past three decades into today's powerful disciplines which allow the engineering of advanced technical devices and the industrial production of active substances for pharmaceutical and biomedical applications. This review is focused on current approaches emerging at the intersection of materials research, nanosciences, and molecular biotechnology. This novel and highly interdisciplinary field of chemistry is closely associated with both the physical and chemical properties of organic and inorganic nanoparticles, as well as to the various aspects of molecular cloning, recombinant DNA and protein technology, and immunology. Evolutionary optimized biomolecules such as nucleic acids, proteins, and supramolecular complexes of these components, are utilized in the production of nanostructured and mesoscopic architectures from organic and inorganic materials. The highly developed instruments and techniques of today's materials research are used for basic and applied studies of fundamental biological processes.  相似文献   

19.
Cell‐free enzymatic catalysis (CFEC) is an emerging biotechnology that enable the biological transformations in complex natural networks to be imitated. This biomimetic approach allows industrial products such as biofuels and biochemical to be manufactured in a green manner. Nevertheless, the main challenge in CFEC is the poor stability, which restricts the effectiveness and lifetime of enzymes in sophisticated applications. Immobilization of the enzymes within solid carriers is considered an efficient strategy for addressing these obstacles. Specifically, putting an “armor‐like” porous metal–organic framework (MOF) exoskeleton tightly around the enzymes not only shields the enzymes against external stimulus, but also allows the selective transport of guests through the accessible porous network. Herein we present the concept of this biotechnology of MOF‐entrapped enzymes and its cutting‐edge applications.  相似文献   

20.
Plant oils are currently the principle resource for the production of bio‐based, high performance polymers, such as polyamides. This process is facilitated by giant strides in chemical catalysis and biotechnology, which allows conversion of vegetable oils in “drop‐in” chemical building blocks. These bio‐based polymer building blocks have equivalent chemical and physical properties as well as similar cost structures compared to conventional petrochemical synthesis feedstock. This allows integration of bio‐based resources into industrial production processes without significant adaptations in logistics or process configuration. However, only use of synergies between chemical and biotechnological unit operations will in future provide for sustainable and eco‐efficient process designs. To allow sustainable supply of bio‐oils to a growing chemical industry without a significant impact on food production demands development of alternative bio‐oil sourcing strategies. In this respect the development of processes for the production of microbial oils, which have equivalent chemical properties to their plant counterparts is imperative. One leading option is the biotechnological conversion of agricultural and food waste streams into microbial oils by combining enzymatic hydrolysis and fermentative production using oleaginous organisms, such as yeasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号