首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atomic force microscopy (AFM) is used to study the phase separation process occurring in block copolymers in the solid state. The simultaneous measurement of the amplitude and the phase of the oscillating cantilever in the tapping mode operation provides the surface topography along with the cartography of the microdomains of different mechanical properties. This technique thus allows to characterize the size and shape of those microdomains and their organization at the surface (e.g. cubic lattice spheres, hexagonal lattice of cylinders, or lamellae). In this study, a series of symmetric triblock copolymers made of a inner elastomeric sequence (poly(butadiene) or poly(alkylacrylate)) and two outer thermoplastic sequences (poly(methylmethacrylate)) is analyzed by AFM in the tapping mode. The microphase separation and their morphology are essential factors for the potential of these materials as a new class of thermoplastic elastomers. Special attention is paid to the control of the surface morphology, as observed by AFM, by the molecular structure of the copolymers (volume ratio of the sequences, molecular weight, length of the alkyl side group) and the experimental conditions used for the sample preparation. The molecular structure of the chains is completely controlled by the synthesis, which relies on the sequential living anionic polymerization of the comonomers. The copolymers are analyzed as solvent-cast films, whose characteristics depend on the solvent used and the annealing conditions. The surface arrangement of the phase-separated elastomeric and thermoplastic microdomains observed on the AFM phase images is discussed on the basis of quantitative information provided by the statistical analysis by Fourier transform and grain size distribution calculations.  相似文献   

2.
The phase‐separation behavior of thermoplastic poly(ester‐imide) [P(E‐I)] multiblock copolymers, (A‐B)n, was investigated by a stepwise variation of the imide content. All the multiblock copolymers were synthesized by solution polycondensation with dimethylformamide as a solvent. P(E‐I)s were prepared with anhydride‐terminated polyester prepolymer and diisocyanates. Polyester prepolymers were prepared by the reaction of pyromellitic dianhydride and two different polyols [poly(tetramethylene oxide glycol) (PTMG) and polycaprolactone diol (PCL)]. Structural determination was done with Fourier transform infrared spectroscopy and Fourier transform NMR, and the molecular weight was determined by gel permeation chromatography. The effect of the imide content on the thermal properties of the synthesized P(E‐I)s was investigated by thermogravimetric analysis and differential scanning calorimetry. The polymers were also characterized for static and dynamic mechanical properties. Thermal analysis data indicated that the polymers based on PTMG were stable up to 330 °C in nitrogen atmosphere and exhibited phase‐separated morphology. Polymers based on PCL showed multistage decomposition, and the films derived from them were too fragile to be characterized for static and dynamic mechanical properties. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 341–350, 2004  相似文献   

3.
ABA‐based triblock copolymers of styrene as block ends and gelable 3‐acryloxypropyltriethoxysilane (APTES) as the middle block were successfully prepared through nitroxide‐mediated polymerization (NMP). The copolymers were bulk self‐assembled into films and the degree of phase separation between the two blocks was evaluated by differential scanning calorimetry (DSC). Their morphology was examined through small angle X‐ray scattering (SAXS) and transmission electron microscopy (TEM), whereas the mechanical properties of the corresponding cross‐linked self‐assembled nanostructures were characterized by dynamic mechanical analysis (DMA). Acidic treatment of the triblock copolymers favored the hydrolysis and condensation reactions of the APTES‐rich nanophase, and induced a mechanical reinforcement evidenced by the increase of storage modulus values and the shift of the glass transition temperature to higher temperatures due to confinement effects. In addition, the lamellar structure of the hybrid films was retained after the removal of the organic part by calcination. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
The “topological polymer chemistry” of amphiphilic linear and cyclic block copolymers at an air/water interface was investigated. A cyclic copolymer and two linear copolymers (AB‐type diblock and ABA‐type triblock copolymers) synthesized from the same monomers were used in this study. Relatively stable monolayers of these three copolymers were observed to form at an air/water interface. Similar condensed‐phase temperature‐dependent behaviors were observed in surface pressure–area isotherms for these three monolayers. Molecular orientations at the air/water interface for the two linear block copolymers were similar to that of the cyclic block copolymer. Atomic force microscopic observations of transferred films for the three polymer types revealed the formation of monolayers with very similar morphologies at the mesoscopic scale at room temperature and constant compression speed. ABA‐type triblock linear copolymers adopted a fiber‐like surface morphology via two‐dimensional crystallization at low compression speeds. In contrast, the cyclic block copolymer formed a shapeless domain. Temperature‐controlled out‐of‐plane X‐ray diffraction (XRD) analysis of Langmuir–Blodgett (LB) films fabricated from both amphiphilic linear and cyclic block copolymers was performed to estimate the layer regularity at higher temperatures. Excellent heat‐resistant properties of organized molecular films created from the cyclic copolymer were confirmed. Both copolymer types showed clear diffraction peaks at room temperature, indicating the formation of highly ordered layer structures. However, the layer structures of the linear copolymers gradually disordered when heated. Conversely, the regularity of cyclic copolymer LB multilayers did not change with heating up to 50 °C. Higher‐order reflections (d002, d003) in the XRD patterns were also unchanged, indicative of a highly ordered structure. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 486–498  相似文献   

5.
Immiscible polymer systems are known to form various kinds of phase‐separated structures capable of producing self‐assembled patterns at the surface. In this study, different surface characterization methods were utilized to study the surface morphology and composition produced after annealing thin polymer films. Two different SIMS techniques—static time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) and dynamic nano‐SIMS—were used, complemented by x‐ray photoelectron spectrometry (XPS) and atomic force microscopy (AFM). Thin films (spin‐coated onto silicon wafers) of polystyrene (PS)–poly(methyl methacrylate) (PMMA) symmetric blends and diblock copolymers of similar molecular weight were investigated. Surface enrichment by PS was found on all as‐cast samples. The samples were annealed at 160 °C for different time periods, after which the blend and the copolymer films exhibited opposite behaviour as seen by ToF‐SIMS and XPS. The annealed blend surface presented an increase in the PMMA concentration whereas that of copolymers showed a decrease in PMMA concentration compared with the as‐cast sample. For blends, the nano‐SIMS as well as AFM images revealed the formation of phase‐separated domains at the surface. The composition information obtained from ToF‐SIMS and XPS, as well as the surface mapping by nano‐SIMS and AFM, allowed us to conclude that PS formed phase separated droplet‐like domains on a thin PMMA matrix on annealing. The three‐dimensional nano‐SIMS images showed that the PS droplets were supported inside a rim of PMMA and that these droplets continued from the surface like columnar rods into the film until the substrate interface. In the case of annealed copolymer samples, the AFM images revealed topographical features resembling droplet‐like domains on the surface but there was no phase difference between the domains and the matrix. In the case of copolymers, owing to the covalent bonding between the blocks, complete phase separation was not possible. The three‐dimensional nano‐SIMS images showed domain structures in the form of striations inside the film, which were not continuous until the substrate interface. Information from the different techniques was required to gain an accurate view of the surface composition and topographical changes that have occurred under the annealing conditions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Atomic force microscopy was successfully applied for comprehensive nanoscale surface and bulk morphological characterization of thermoplastic elastomeric triblock copolymers: poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS) having different block lengths and their clay based nanocomposites. Commercially available Cloisite®20A and octadecyl (C18) ammonium ion modified montmorillonite clay (OC) prepared in our laboratory by cation exchange reaction were used. The phase detected images in the tapping mode atomic force microscopy exhibited a well‐ordered phase separated morphology consisting of bright nanophasic domains corresponding to hard component and darker domains corresponding to softer rubbery ethylene‐co‐butylene (PEB) lamella for all the neat triblock copolymers. This lamellar morphology gave a domain width of 19–23 nm for styrenic nanophase and 12–15 nm for ethylene‐co‐butylene phase of SEBS having end to mid block length ratio of 30:70 and block molecular weights of 8800–41,200–8800. On increasing the ratio of block lengths of the polymer matrix and the selectivity of the solvent toward the blocks used for casting, the morphological features of the resultant films altered along with change in domain thickness. The phase images showed position and distribution of the brightest clay stacks in the dark‐bright contrast of the base matrix of the nanocomposite. Exfoliated and intercalated‐exfoliated morphology obtained in the case of Cloisite®20A and OC‐based SEBS nanocomposites, respectively, is further supported by X‐ ray diffraction and transmission electron microscopy studies. The lamellar thickness of the soft phases widened to 50–75 nm, where the layered clay silicates (40–54 nm in length and 4–17 nm in width) were embedded in the soft rubbery phases in the block copolymeric matrix of the nanocomposite. The marginally thicker width of the hard styrenic phases and slightly shrinked width of the soft rubbery lamella can be observed from the regions where no nanofiller is present. Distinct differences in bulk morphologies of the nanocomposites prepared in the melt and the solution processes were obtained with nanocomposites. The presence of clay particles was evident from the almost zero pull‐off and snap‐in force in the force‐distance analysis of SEBS based nanocomposite. This analysis also revealed stronger tip interaction resulting in highest contact and adhesive forces with the softer PEB region relative to the harder PS region. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 52–66, 2007  相似文献   

7.
This study deals with flexible films incorporating nisin for antibacterial active packaging purposes. A novel approach was used to gain control over nisin release profile from a thermoplastic film in order to enhance its antibacterial efficiency. This approach involves polymer blends of ethylene vinyl acetate copolymer and co‐polyamide at various ratios. It was shown that the release profile of an antibacterial substance from active packaging to foodstuff is a key factor concerning the antibacterial efficiency. Samples of 400[μm] were produced by using a laboratory twin screw compounder and a laboratory hot press. Samples were characterized for their migration kinetics, molecular interactions, mechanical properties, and water swelling properties. Antibacterial activity tests show that nisin incorporated films reduced bacterial count by different extents. Listeria ATCC 33090 was used as target bacteria (data not shown). Nisin migration profile to water medium was determined by Lowry's protocol. Scanning electron microscopy images and thermal analysis indicated that no significant molecular interactions occurred. Furthermore, droplet and co‐continues like morphology were seen at different polymer blend ratios. Osmotic pressure driven release mechanism appears to be the dominant migration mechanism, and diffusion kinetics was dominant. Results show that morphology of the polymer blend matrix alters the diffusion coefficient. In addition, water swelling characterization of different samples was done in order to reveal the relations with the diffusion coefficient. It seems that there is an inverse resemblance between water swelling and the diffusion coefficient trends.  相似文献   

8.
The paper presents the electrostatic charge dissipative (ESD) properties of the conducting copolymers of aniline (AN) and 1‐amino‐2‐naphthol‐4‐sulfonic acid (ANSA) blended with low‐density polyethylene (LDPE). The copolymers of aniline and ANSA were synthesized under different reaction conditions. Blending of copolymers with LDPE was carried out in twin screw extruder by melt blending method by loading 0.5 and 1.0 wt% of the conducting copolymer in LDPE matrix. The mechanical properties of the blended films depend on the incorporation of copolymer in the LDPE matrix. The morphology of copolymer–LDPE blend was studied by scanning electron microscopy. The conductivity of the blown film of poly(AN‐co‐ANSA)/LDPE blend was found to be in the range of 10?6–10?11 S/cm, showing its potential use as antistatic bag for the encapsulation of electronic equipments. The static decay time of the film was found to be of the order of 0.1–1.9 sec on recording the decay time from 5000 to 500 V. Static charge measurements carried out on the films show that no charge is present on the surface. The level of interaction between the copolymers and the matrix polymer was determined by the FTIR spectra, blend morphology, electrical conductivity, and thermal analysis. The effect of the morphology on electrical and antistatic behavior of copolymers has also been investigated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The ABA‐type triblock copolymers consisting of poly(2‐adamantyl vinyl ether) [poly(2‐AdVE)] as outer hard segments and poly(6‐acetoxyhexyl vinyl ether) [poly(AcHVE)], poly(6‐hydroxyhexyl vinyl ether) [poly(HHVE)], or poly(2‐(2‐methoxyethoxy)ethyl vinyl ether) [poly(MOEOVE)] as inner soft segments were synthesized by sequential living cationic polymerization. Despite the presence of polar functional groups such as ester, hydroxyl, and oxyethylene units in their soft segments, the block copolymers formed elastomeric films. The thermal and mechanical properties and morphology of the block copolymers showed that the two polymer segments of these triblock copolymers were segregated into microphase‐separated structure. Effect of the functional groups in the soft segments on gas permeability was investigated as one of the characteristics of the new functional thermoplastic elastomers composed solely of poly(vinyl ether) backbones. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1114–1124  相似文献   

10.
《先进技术聚合物》2018,29(10):2601-2611
Biomaterials and their host organism's quintessential place of interaction are the surfaces of materials, as transportation of liquids within microchannels requires hydrophilic surfaces. Modifying the hydrophobic surface of polydimethylsiloxane (PDMS) into a hydrophilic one which can be used in biomaterials remains a big challenge. Herein, PDMS‐hydroxyethylmethacrylate (HEMA) films were prepared by the condensation of PDMS using isophorone diisocyanate as a cross‐linker, followed by the incorporation of HEMA via radical copolymerization. The as‐prepared PDMS‐HEMA films were thereafter hydrophilized via physical treatment with heptamethyltrisiloxane. The surface properties of the obtained PDMS‐HEMA films were characterized in wettability, morphology, topography, swelling, mechanical properties, and protein adsorption. Compared to pristine PDMS‐HEMA as control, the surface wettability, roughness, and protein adsorption of the hydrophilized PDMS‐HEMA films were significantly improved while the films also exhibited excellent optical properties. However, the improvement of the swelling properties remains insignificant, indicating that the interior morphology was still based on the hydrophobic siloxane PDMS. The long‐term hydrophilicity was considered good as no significant hydrophobic recovery was noticeable in a period of 5 months after treatment.  相似文献   

11.
The surface morphologies of poly(styrene‐b‐4vinylpyridine) (PS‐b‐P4VP) diblock copolymer and homopolystyrene (hPS) binary blend thin films were investigated by atomic force microscopy as a function of total volume fraction of PS (?PS) in the mixture. It was found that when hPS was added into symmetric PS‐b‐P4VP diblock copolymers, the surface morphology of this diblock copolymer was changed to a certain degree. With ?PS increasing at first, hPS was solubilized into the corresponding domains of block copolymer and formed cylinders. Moreover, the more solubilized the hPS, the more cylinders exist. However, when the limit was reached, excessive hPS tended to separate from the domains independently instead of solubilizing into the corresponding domains any longer, that is, a macrophase separation occurred. A model describing transitions of these morphologies with an increase in ?PS is proposed. The effect of composition on the phase morphology of blend films when graphite is used as a substrate is also investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3496–3504, 2004  相似文献   

12.
Using a microthermal analyzer TA Instruments 2990 μTA, we have analyzed the morphologies developed for the resin tetraglycidyl‐4,4′‐diaminodiphenylmethane cured with an aromatic amine 4,4′‐diaminodiphenylsulphone modified with different amounts of poly(styrene‐co‐acrylonitrile) (SAN) thermoplastic. The phase‐separation phenomenon induced by polymerization was also followed by scanning electron microscopy. Using the modulated local thermal‐analysis mode of μTA, the glass‐transition temperatures of different domains for each sample were evaluated. Dynamic mechanical analyzer experiments were made to evaluate the macroscopic thermal properties of the blends. A morphology was well established for all blends examined with these techniques showing a nodular structure, the epoxy‐rich phase, and a continuous phase, the SAN‐rich phase, that forms the matrix. From both microscopic and macroscopic thermal analyses, it is concluded that a phase separation exists for the blends investigated. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 284–289, 2002  相似文献   

13.
Hydroxyl‐terminated poly(ether ether ketone) with pendent tert‐butyl groups (PEEKTOH) was synthesized by the nucleophilic substitution reaction of 4,4′‐difluorobenzophenone with tert‐butyl hydroquinone with potassium carbonate as a catalyst and N‐methyl‐2‐pyrrolidone as a solvent. Diglycidyl ether of bisphenol A epoxy resin was toughened with PEEKTOHs having different molecular weights. The melt‐mixed binary blends were homogeneous and showed a single composition‐dependent glass‐transition temperature (Tg). Kelley–Bueche and Gordon–Taylor equations gave good correlation with the experimental Tg. Scanning electron microscopy studies of the cured blends revealed a two‐phase morphology. A sea‐island morphology in which the thermoplastic was dispersed in a continuous matrix of epoxy resin was observed. Phase separation occurred by a nucleation and growth mechanism. The dynamic mechanical spectrum of the blends gave two peaks corresponding to epoxy‐rich and thermoplastic‐rich phases. The Tg of the epoxy‐rich phase was lower than that of the unmodified epoxy resin, indicating the presence of dissolved PEEKTOH in the epoxy matrix. There was an increase in the tensile strength with the addition of PEEKTOH. The fracture toughness increased by 135% with the addition of high‐molecular‐weight PEEKTOH. The improvement in the fracture toughness was dependent on the molecular weight and concentration of the oligomers present in the blend. Fracture mechanisms such as crack path deflection, ductile tearing of the thermoplastic, and local plastic deformation of the matrix occurred in the blends. The thermal stability of the blends was not affected by blending with PEEKTOH. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 541–556, 2006  相似文献   

14.
In this study, the structure–property relationships for a series of statistical 2‐nonyl‐2‐oxazoline (NonOx) and 2‐phenyl‐2‐oxazoline (PhOx) copolymers were investigated for the first time. The copolymerization kinetics were studied and the reactivity ratios were calculated to be rNonOx = 7.1 ± 1.4 and rPhOx = 0.02 ± 0.1 revealing the formation of gradient copolymers. The synthesis of a systematical series of NonOx–PhOx copolymers is described, whereby the amount of NonOx was increased in steps of 10 mol %. The thermal and surface properties were investigated for this series of well‐defined copolymers. The thermal properties revealed a linear decrease in glass transition temperature for copolymers containing up to 39 wt % NonOx. Furthermore, the melting temperature of the copolymers containing 0 to 55 wt % PhOx linearly decreased most likely due to disturbance of the NonOx crystalline domains by incorporation of PhOx in the NonOx part of the copolymer. The surface energies of spincoated polymer films revealed a strong decrease in surface energy upon incorporation of NonOx in the copolymers due to strong phase separation between NonOx and PhOx allowing the NonOx chains to orient to the surface. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6433–6440, 2009  相似文献   

15.
Atomic force microscopy (AFM), small angle X‐ray scattering (SAXS), temperature modulated differential scanning calorimetry (TMDSC), variable heating rate DSC, an independent rapid heating rate method for melting points, and cyclic mechanical testing were used to study semicrystalline thermoplastic elastomeric polypropylenes (ELPPs) and related semicrystalline polyolefins including ethylene copolymers. Low crystallinity (ca., 9 and 15%) ELPP samples were studied by AFM in the nonoriented and melt‐oriented states. AFM images taken as a function of time after quenching of a melt‐drawn and highly nucleated film resolved details of secondary crystallization involving lateral growth on the ordered row‐nucleated structures. For nonoriented films, isothermal melt crystallization at high temperatures (110 °C) led to similar features for the two ELPPs. The dominant crystalline morphology studied by AFM consisted of small (several nm in width) granular crystallites organized into immature but large spherulites spanning tens of microns. A striking cross‐hatch morphology was detected in regions of the surface in 110 °C crystallized samples, which is contrasted with melt‐drawn films where row nucleated structures dominated the morphology in the film under no external stress. AFM was also used to monitor the morphological changes that occurred as the films were stretched at 25 °C. Break‐down of lamellae was observed, resulting in oriented narrow fibrils. Cyclic stress‐strain curves showed the expected result where lower crystallinity ELPPs had higher recoverable levels of set after both 100 and 500% elongation. TMDSC was used to resolve the broad melting and recrystallization regions in these low to medium crystallinity ELPP systems, and to contrast the results with ethylene copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

16.
In this study, biodegradable shape‐memory polymers—polylactide‐co‐poly(glycolide‐co‐caprolactone) multiblock (PLAGC) copolymers—were synthesized by the coupling reaction of both macrodiols of polylactide (PLLA‐diol) and poly(glycolide‐co‐caprolactone) (PGC‐diol) in the presence of 1,6‐hexanediisocyanate as coupling agent. The copolymers formed were found to be thermoplastic and easily soluble in common solvents. The compositions of the copolymers were determined by 1H‐NMR and the influences of segment lengths and contents of both macrodiols on the properties of the PLAGC copolymers were investigated. It was found that the copolymers had adjustable mechanical properties which depended on contents and segment lengths of both macrodiols. The copolymers showed such good shape‐memory properties that the strain fixity rate (Rf) and the strain recovery rate (Rr) exceed 90%. By means of adjusting the compositions of the copolymers, PLAGC copolymers with transition temperatures around 45°C could be obtained. The degradation rate determination showed that the PLAGC copolymers have fast degradation rates, the mechanical strengths of the PLAGC copolymers would be completely lost within 1–2 months depending on molecular weights and contents of the both segments of PLLA and PGC. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
The nonsolvent‐induced phase separation (NIPS) method was employed to fabricate the porous films based on polyvinyl chloride loaded with carbon nanotubes (CNTs). The combinational addition of CNTs and a proper nonsolvent (ethanol) resulted in a porous surface layer with the nano‐size nodular structure possessing an exact superhydrophobic behavior (water contact angle [WCA] = 157° and sliding angle [SA] <5°). The size of PVC nodules at the surface layer varies in the range of 200 to 800 nm depending on the nonsolvent concentrations, and polymer molecular weight. The effects of various nonsolvent concentrations as well as PVC molecular weight on the surface properties of the films were also investigated. Morphological and roughness analyses revealed the pronounced role of PVC molecular weight on the size of nodules, and the structural uniformity of the surface morphology based on the thermodynamic parameters such as relaxation time and dynamic of polymer chains. The concurrent use of CNTs and nonsolvent led to promote the NIPS process due to the nucleating role of CNTs, which were localized within the polymer‐rich phase leading to an ultra‐fine and packed nodular surface structure. Transmission electron microscopy results also proved the very well dispersion quality of CNTs. Glass transition temperature of PVC was also assessed, and the results were correlated to the associating ability of CNTs with polymer chains during the phase separation process. Overall, the promising potential of CNT/ethanol combination on the surface porosity and hydrophobicity of PVC nanocomposite films was revealed in this study, which could further extend its application window.  相似文献   

18.
Novel thermoplastic elastomers based on multi‐block copolymers of poly(l ‐lysine) (PLL), poly(N‐ε‐carbobenzyloxyl‐l ‐lysine) (PZLL), poly(ε‐caprolactone) (PCL), and poly(ethylene glycol) (PEG) were synthesized by combination of ring‐opening polymerization (ROP) and chain extension via l ‐lysine diisocyanate (LDI). SEC and 1H NMR were used to characterize the multi‐block copolymers, with number‐average molecular weights between 38,900 and 73,400 g/mol. Multi‐block copolymers were proved to be good thermoplastic elastomers with Young's modulus between 5 and 60 MPa and tensile strain up to 1300%. The PLL‐containing multi‐block copolymers were electrospun into non‐woven mats that exhibited high surface hydrophilicity and wettability. The polypeptide–polyester materials were biocompatible, bio‐based and environment‐friendly for promising wide applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3012–3018  相似文献   

19.
Well‐defined amphiphilic PCL‐b‐PDMAEMA block copolymers were successfully synthesized by a combination of ATRP and “click” chemistry following either a commutative two‐step procedure or a straightforward one‐pot process using CuBr · 3Bpy as the sole catalyst. Compared to the traditional coupling method, combining ATRP and click chemistry even in a “one‐pot” process allows the preparation of PCL‐b‐PDMAEMA diblock copolymers characterized by a narrow molecular weight distribution and quantitative conversion of azides and alkynes into triazole functions. Moreover, the amphiphilic character of these copolymers was demonstrated by surface tension measurements and critical micellization concentration was calculated.

  相似文献   


20.
Diffuse reflectors have various applications in devices ranging from liquid crystal displays to light emitting diodes, to coatings. Herein, specular and diffuse reflectance from controlled phase separation of polymer blend films, a well‐known self‐organization process, are studied. Temperature‐induced spinodal phase separation of polymer blend films in which one of the components is selectively extracted is shown to exhibit enhanced surface roughness as compared to unextracted films, leading to a notable increase of diffuse reflectance. Diffuse reflectance of UV–visible light from such selectively leached phase‐separated blend films is determined by a synergy of varying lateral scale of phase separation (≈200 nm to 1 μm) and blend film surface roughness (0–40 nm). These critical parameters are controlled by tuning annealing time (0.5–3 h) and temperature (140, 150, 160 °C) of phase separation. Angle‐resolved diffuse reflection studies show that the surface‐roughened polymer films exhibit diffuse reflectance up to 40° from normal incident light in contrast to optically uniform as‐cast films that exhibit largely specular reflectance. Furthermore, the intensity of the diffusively reflected light can be enhanced (300–700 nm) or reduced (220–300 nm) significantly by coating the leached phase‐separated films with a thin silver over layer.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号