共查询到20条相似文献,搜索用时 15 毫秒
1.
Köneke SG van Beek JD Ernst M Meier BH 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2010,207(2):197-205
Zero-quantum coherence generation and reconversion in magic-angle spinning solid-state NMR is analyzed. Two methods are discussed based on implementations using symmetry-based pulse sequences that utilize either isotropic J couplings or dipolar couplings. In either case, the decoupling of abundant proton spins plays a crucial role for the efficiency of the zero-quantum generation. We present optimized sequences for measuring zero-quantum single-quantum correlation spectra in solids, achieving an efficiency of 50% in ubiquitin. The advantages and disadvantages of zero-quantum single-quantum over single-quantum single-quantum correlation spectroscopy are explored, and similarities and differences with double-quantum single-quantum correlation spectroscopy are discussed. Finally, possible application of zero-quantum single-quantum experiments to polypeptides, where it can lead to better spectral resolution is investigated using ubiquitin, where we find high efficiency and high selectivity, but also increased line widths in the MQ dimension. 相似文献
2.
Orr RM Duer MJ Ashbrook SE 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2005,174(2):301-309
An experiment is presented that enables the measurement of small chemical shift anisotropy tensors under fast magic-angle spinning (MAS). The two-dimensional spectra obtained give a fast MAS sideband pattern in the directly observed dimension with the spinning sideband intensities equivalent to the chemical shift anisotropy scaled by a factor of N, or equivalently the sample spinning frequency scaled by 1/N, in the indirectly observed dimension. The scaling factor may be arbitrarily varied by changing the number and timings of the rotor synchronized pi-pulses used. Desirable features of the experiment include a fixed length pulse sequence and efficient sampling of the indirectly observed dimension. In addition, neither quadrature detection in the indirect dimension nor storage periods are required, consequently no signal intensity is discarded by the pulse sequence. The experiment is demonstrated using (31)P NMR of sodium phosphate and (13)C NMR of fumaric acid monoethyl ester for which a scaling factor of N=10.2 was employed. 相似文献
3.
Alejandro C. Olivieri 《Solid state nuclear magnetic resonance》1998,11(3-4):181-187
It is shown how to calculate random errors in chemical shift tensor components and in the Euler angles which fix the orientation of the σ tensor in the molecular frame, as obtained from spinning sideband analysis of MAS NMR spectra of powdered solids, when heteronuclear dipolar coupling interactions occur in a two spin system. The procedure was applied to experimental data corresponding to the chemical shift tensor of a carbon-13 bonded to a phosphorus-31 nucleus. Clues are given concerning the experimental variables to be set in order to obtain the desired accuracy in the orientation angles. 相似文献
4.
Dvinskikh SV Zimmermann H Maliniak A Sandström D 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2004,168(2):5967-201
A novel MAS NMR approach is presented for the determination of heteronuclear dipolar couplings in unoriented materials. The technique is based on the proton-detected local field (PDLF) protocol, and achieves dipolar recoupling by R-type radio-frequency irradiation. The experiment, which is called R-PDLF spectroscopy, is demonstrated on solid and liquid-crystalline systems. For mobile systems, it is shown that the R-PDLF scheme provides better dipolar resolution as compared to techniques combining conventional separated local field (SLF) spectroscopy with R-type recoupling. 相似文献
5.
Spinning sidebands (SSBs) in the MAS NMR spectrum of a polycrystalline solid are related to the principal values of the chemical shift or quadrupole coupling tensors. At present, 2D methods are widely used to sort out the SSBs for each isotropic peak. Here a simple and efficient method for separating the SSBs in 1D MAS NMR spectra is described. It is based on finding the optimal spinning rate with a mathematical algorithm and subsequently treating the spectra with filtering functions. 相似文献
6.
Jrme Hirschinger 《Solid state nuclear magnetic resonance》2008,34(4):210-223
Using the Anderson–Weiss (AW) formalism, analytical expressions of the NMR signal are obtained for the following magic-angle spinning (MAS) experiments: total suppression of sidebands (TOSS); phase adjusted spinning sidebands (PASS); rotational-echo double-resonance (REDOR); rotor-encoded REDOR (REREDOR); cross-polarization magic-angle spinning (CPMAS); exchange induced sidebands (EIS); one-dimensional exchange spectroscopy by sideband alternation (ODESSA); time-reverse ODESSA (trODESSA); centerband-only detection of exchange (CODEX). In order to test the validity of the AW approach, the Gaussian powder approximation is compared with exact powder calculations. A quantitative study of the effect of molecular dynamics on the efficiency of the TOSS and REDOR pulse sequences is then presented. 相似文献
7.
Marin-Montesinos I Brouwer DH Antonioli G Lai WC Brinkmann A Levitt MH 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2005,177(2):307-317
We examine the influence of continuous-wave heteronuclear decoupling on symmetry-based double-quantum homonuclear dipolar recoupling, using experimental measurements, numerical simulations, and average Hamiltonian theory. There are two distinct regimes in which the heteronuclear interference effects are minimized. The first regime utilizes a moderate homonuclear recoupling field and a strong heteronuclear decoupling field; the second regime utilizes a strong homonuclear recoupling field and a weak or absent heteronuclear decoupling field. The second regime is experimentally accessible at moderate or high magic-angle-spinning frequencies and is particularly relevant for many realistic applications of solid-state NMR recoupling experiments to organic or biological materials. 相似文献
8.
近年来,固体核磁共振被广泛应用于膜蛋白、纤维化蛋白等体系的结构和功能研究.在固体核磁共振实验中,快速魔角旋转或高功率射频场照射等实验条件将导致样品发热.生物样品发热能导致严重的后果,例如样品温度的快速升高,信号分辨率、信噪比的降低,发热严重时甚至导致样品的不可逆损坏.近年来,人们对样品发热问题进行了一些研究,发现通过优化样品制备条件或固体核磁共振实验条件,以及改进探头设计等手段,可以在一定程度上减轻样品发热.该文主要综述了生物固体核磁共振研究中导致样品发热的原因和减轻样品发热的方法. 相似文献
9.
Fast acquisition of multi-dimensional spectra in solid-state NMR enabled by ultra-fast MAS 总被引:1,自引:1,他引:0
Sgolne Laage Joseph R. Sachleben Stefan Steuernagel Roberta Pierattelli Guido Pintacuda Lyndon Emsley 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2009,196(2):133-141
The advantages offered by ultra-fast (>60 kHz) magic angle spinning (MAS) rotation for the study of biological samples, notably containing paramagnetic centers are explored.It is shown that optimal conditions for performing solid-state 13C NMR under 60 kHz MAS are obtained with low-power CW 1H decoupling, as well as after a low-power 1H,13C cross-polarization step at a double-quantum matching condition. Acquisition with low-power decoupling highlights the existence of rotational decoupling sidebands. The sideband intensities and the existence of first and second rotary conditions are explained in the framework of the Floquet–van Vleck theory.As a result, optimal 13C spectra of the oxidized, paramagnetic form of human copper zinc superoxide dismutase (SOD) can be obtained employing rf-fields which do not exceed 40 kHz during the whole experiment. This enables the removal of unwanted heating which can lead to deterioration of the sample. Furthermore, combined with the short 1H T1s, this allows the repetition rate of the experiments to be shortened from 3 s to 500 ms, thus compensating for the sensitivity loss due to the smaller sample volume in a 1.3 mm rotor. The result is that 2D 13C–13C correlation could be acquired in about 24 h on less than 1 mg of SOD sample. 相似文献
10.
Mithu VS Paul S Kurur ND Madhu PK 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2011,209(2):359-363
We compare in this communication several heteronuclear dipolar decoupling sequences in solid-state nuclear magnetic resonance experiments under a magic-angle spinning frequency of 60 kHz. The decoupling radiofrequency field amplitudes considered are 190 and 10 kHz. No substantial difference was found among the sequences considered here in performance barring the difference in the optimisation protocol of the various schemes, an aspect that favours the use of swept-frequency two pulse phase modulation (SW(f)-TPPM). 相似文献
11.
The calibration of temperature in a magic-angle spinning probe with lead nitrate is discussed. The effects of rotation frequency on temperature are demonstrated. 相似文献
12.
The question of the homogeneous broadening that occurs in 2D solid-state NMR experiments is examined. This homogeneous broadening is mathematically introduced in a simple way, versus the irreversible decay rates related to the coherences that are involved during t1 and t2. We give the pulse sequences and coherence transfer pathways that are used to measure these decay rates. On AlPO4 berlinite, we have measured the 27Al echo-type relaxation times of the central and satellite transitions on 1Q levels, so that of coherences that are situated on 2Q, 3Q, and 5Q levels. We compare the broadenings that can be deduced from these relaxation times to those directly observed on the isotropic projection of berlinite with multiple-quantum magic-angle spinning (MAS), or satellite-transition MAS. We show that the choice of the high-resolution method, should be done according to the spin value and the corresponding homogeneous broadening. 相似文献
13.
Siegel R Hirschinger J Carlier D Ménétrier M Delmas C 《Solid state nuclear magnetic resonance》2003,23(4):243-262
59Co and 23Na NMR has been applied to the layered cobalt oxides NaCoO2 and HCoO2 at three different magnetic field strengths (4.7, 7.1 and 11.7 T). The 59Co and 23Na quadrupole and anisotropic shift tensors have been determined by iterative fitting of the NMR line shapes at the three magnetic field strengths. Due to the large 59Co quadrupole interaction in NaCoO2, a frequency-swept irradiation procedure was used to alleviate the limited bandwidth of the excitation. While the 59Co and 23Na shift and quadrupole coupling tensors in NaCoO2 are found to be coincident and axially symmetric in agreement with the crystal symmetry requirements, the fits of the 59Co NMR spectra clearly show the presence of structural disorder in HCoO2. The 23Na chemical shift anisotropy can be reproduced by shift tensor calculations using a point dipole model and considering that the magnetic susceptibility in NaCoO2 is due to Van Vleck paramagnetism for Co3+. Electric field gradient calculations using either the empirical point charge model or the ab initio full potential-linearized augmented plane wave method are compared with the experimental NMR data. 相似文献
14.
Mattias Edn Andy Y.H. Lo 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2009,200(2):267-279
Using average Hamiltonian (AH) theory, we analyze recently introduced homonuclear dipolar recoupling pulse sequences for exciting central-transition double-quantum coherences (2QC) between half-integer spin quadrupolar nuclei undergoing magic-angle-spinning. Several previously observed differences among the recoupling schemes concerning their compensation to resonance offsets and radio-frequency (rf) inhomogeneity may qualitatively be rationalized by an AH analysis up to third perturbation order, despite its omission of first-order quadrupolar interactions. General aspects of the engineering of 2Q-recoupling pulse sequences applicable to half-integer spins are discussed, emphasizing the improvements offered from a diversity of supercycles providing enhanced suppression of undesirable AH cross-terms between resonance offsets and rf amplitude errors. 相似文献
15.
Enrico De Vita Lucio Frydman 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2001,148(2):327
Novel procedures for the spectral assignment of peaks in high-resolution solid-state 13C NMR are discussed and demonstrated. These methods are based on the observation that at moderate and already widely available rates of magic-angle spinning (10–14 kHz MAS), CH and CH2 moieties behave to a large extent as if they were effectively isolated from the surrounding proton reservoir. Dipolar-based analogs of editing techniques that are commonly used in liquid-state NMR such as APT and INEPT can then be derived, while avoiding the need for periods of homonuclear 1H–1H multipulse decoupling. The resulting experiments end up being very simple, essentially tuning-free, and capable of establishing unambiguous distinctions among CH, CH2, and carbon sites. The principles underlying such sequences were explored using both numerical calculations and experimental measurements, and once validated their editing applications were illustrated on a number of compounds. 相似文献
16.
Sarkar R Concistrè M Johannessen OG Beckett P Denning M Carravetta M Al-Mosawi M Beduz C Yang Y Levitt MH 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2011,212(2):460-463
The accurate temperature measurement of solid samples under magic-angle spinning (MAS) is difficult in the cryogenic regime. It has been demonstrated by Thurber et al. (J. Magn. Reson., 196 (2009) 84-87) [10] that the temperature dependent spin-lattice relaxation time constant of 79Br in KBr powder can be useful for measuring sample temperature under MAS over a wide temperature range (20–296 K). However the value of T1 exceeds 3 min at temperatures below 20 K, which is inconveniently long. In this communication, we show that the spin-lattice relaxation time constant of 127I in CsI powder can be used to accurately measure sample temperature under MAS within a reasonable experimental time down to 10 K. 相似文献
17.
Itaru OikawaMariko Ando Yasuto NodaKoji Amezawa Hajime KiyonoTadashi Shimizu Masataka TanshoHideki Maekawa 《Solid State Ionics》2011,192(1):83-87
Local structure around Sc in BaZr1 − xScxO3 − δ protonic conductor has been investigated by 45Sc MAS-NMR. The MAS-NMR spectra were consisted of several peaks, which can be assigned to Sc in different coordination environment. Compositional dependence of the spectrum was observed. The coordination environment of Sc is determined from the peak deconvolution, and the oxygen vacancy concentration and the protonic defect concentration around Sc were obtained. The present investigation suggests that oxygen vacancies preferentially located around Sc and the concentration of oxygen vacancies in the vicinity of Sc increases with increasing the Sc content. Protonic defects were found to be preferentially located around Sc at lower Sc content. 相似文献
18.
Sensitivity enhancement using paramagnetic relaxation in MAS solid-state NMR of perdeuterated proteins 总被引:3,自引:3,他引:0
Linser R Chevelkov V Diehl A Reif B 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2007,189(2):209-216
Previously, Ishii et al., could show that chelated paramagnetic ions can be employed to significantly decrease the recycle delay of a MAS solid-state NMR experiment [N.P. Wickramasinghe, M. Kotecha, A. Samoson, J. Past, Y. Ishii, Sensitivity enhancement in C-13 solid-state NMR of protein microcrystals by use of paramagnetic metal ions for optimizing H-1 T-1 relaxation, J. Magn. Reson. 184 (2007) 350-356]. Application of the method is limited to very robust samples, for which sample stability is not compromised by RF induced heating. In addition, probe integrity might be perturbed in standard MAS PRE experiments due to the use of very short duty cycles. We show that these deleterious effects can be avoided if perdeuterated proteins are employed that have been re-crystallized from D(2)O:H(2)O=9:1 containing buffer solutions. The experiments are demonstrated using the SH3 domain of chicken alpha-spectrin as a model system. The labeling scheme allows to record proton detected (1)H, (15)N correlation spectra with very high resolution in the absence of heteronuclear dipolar decoupling. Cu-edta as a doping reagent yields a reduction of the recycle delay by up to a factor of 15. In particular, we find that the (1)H T(1) for the bulk H(N) magnetization is reduced from 4.4s to 0.3s if the Cu-edta concentration is increased from 0mM to 250 mM. Possible perturbations like chemical shift changes or line broadening due to the paramagnetic chelate complex are minimal. No degradation of our samples was observed in the course of the experiments. 相似文献
19.
27Al and 29Si Magic-Angle Spinning NMR results are reported for conventionally prepared glass of cordierite stoichiometry (2MgO · 2Al2O3 · 5SiO2), the metastable high-quartz solid solution (μ-cordierite) and the high-temperature polymorph of cordierite (α-cordierite). Both, 27Al two-dimensional (2D) quadrupole nutation experiments and 27Al satellite transition spectroscopy (SATRAS) have been applied to identify two different tetrahedrally-coordinated aluminium sites (AlO4). SATRAS has been used to extract the quadrupole interaction parameters and their distribution, the isotropic chemical shifts and the relative populations of the different Al sites. Both, the 27Al and 29Si NMR results, lead to the conclusion that a perfect Si/Al disorder does not exist in these investigated cordierite samples. 相似文献
20.
A pulse scheme for phase sensitive detection of two-dimensional (2D) homonuclear correlation magic angle spinning (MAS) NMR spectra is proposed. This scheme combines the time proportional phase increment phase cycling scheme and the time reversal 2D MAS experiment. This approach enables the direct detection of purely absorptive 2D MAS spectra, containing cross peaks that connect only diagonal peaks of dipolar correlated spins. 相似文献