首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Absorption and fluorescence emission spectra of coumarins 6 and 7 were recorded in solvents with different solvent parameters, viz., dielectric constant epsilon and refractive index n. The fluorescence lifetime of these dyes were measured in butanol at higher values of viscosity over temperature. Experimental ground and excited state dipole moments are determined by means of solvatochromic shift method and also the excited state dipole moments are determined in combination with ground state dipole moments. It was determined that dipole moments of the excited state were higher than those of the ground state in both the molecules.  相似文献   

2.
Absorption and fluorescence emission of 4 and 7 substituted coumarins viz. C 440, C 490, C 485 and C 311 have been studied in various polar and non-polar organic solvents. These coumarin dyes are substituted with alkyl, amine and fluorine groups at 4- and 7-positions. They give different absorption and emission spectra in different solvents. The study leads to a possible assignment of energy level scheme for such coumarins including the effect on ground state and excited state dipole moments due to substitutions. Excited state dipole moments of these dyes are calculated by solvetochromic data experimentally and theoretically these are calculated by PM 3 method. The dipole moments in excited state, for all molecules investigated here, are higher than the corresponding values in the ground state. The increase in dipole moment has been explained in terms of the nature of excited state and resonance structure.  相似文献   

3.
Absorption and emission spectra of 9-N,N-dimethylaniline decahydroacridinedione (DMAADD) have been studied in different solvents. The fluorescence spectra of DMAADD are found to exhibit dual emission in aprotic solvents and single emission in protic solvents. The effect of solvent polarity and viscosity on the absorption and emission spectra has also been studied. The fluorescence excitation spectra of DMAADD monitored at both the emission bands are different. The presence of two different conformation of the same molecule in the ground state has lead to two close lying excited states, local excited (LE) and charge transfer (CT), and thereby results in the dual fluorescence of the dye. A CTstate involving the N,N-dimethylaniline group and the decahy droacridinedione chromophore as donor and acceptor, respectively, has been identified as the source of the long wavelength anomalous fluorescence. The experimental studies were supported by ab initio time dependent-density functional theory (TDDFT) calculations performed at the B3LYP/6-31G* level. The molecule possesses photoinduced electron transfer (PET) quenching in the LE state, which is confirmed by the fluorescence lifetime and fluorescent intensity enhancement in the presence of transition metal ions.  相似文献   

4.
The photophysical properties of newly synthesized bischromophoric solvatochromic stilbazolium dyes, 1,3-bis-[4-(p-N,N-dialkylaminostyryl)pyridinyl]propane dibromides (C1-C9), were studied in a series of solvents and their spectroscopic properties were compared with structurally related, monochromophoric styrylpyridinium dyes (SP1-SP9). The position of the UV-vis absorption spectra maximum of novel dyes is only slightly solvent polarity dependent in contrast to the fluorescence spectra that show pronounced solvatochromic effect demonstrated by a large Stokes shifts. The influence of the solvent on absorption and emission spectra, and the solvatochromic properties observed for both ground and first excited states for all the dyes were used for the evaluation of their excited state dipole moments. The ground state dipole moments of both mono- and bischromophoric dyes were established by applying ab initio calculations. The calculations and measurements unexpectedly show that the bischromophoric dyes are characterized by ground state dipole moments being equal to about half of that characterizing their monomeric equivalents, while the excited state dipole moments of bischromophoric dyes are about 10-25% higher in comparison to their monomeric equivalents.  相似文献   

5.
The absorption and fluorescence emission of pyridoxamine were studied as function of pH and solvent properties. In the ground state, pyridoxamine exhibits different protonated forms in the range of pH 1.5–12. Fluorescence studies showed that the same species exist at the lowest singlet excited state but at different pH ranges. The phenol group is by ca. 8 units more acidic in the excited state than in the ground state. On the other hand, the pyridine N‐atom is slightly more basic in the lowest excited state than in the ground state. Excitation spectra and emission decays in the pH range of 8–10 indicate the protonation of the pyridine N‐atom by proton transfer from the amine group, in the ground and singlet excited states. Spectroscopic studies in different solvents showed that pyridoxamine in the ground or excited states exhibits intramolecular proton transfer from the pyridine N‐atom to the phenol group, which is more favorable in solvents of low hydrogen‐bonding capacity. The cationic form with the protonated phenolic group, which emits at shorter wavelength, is the dominant species in nonprotic solvents, but, in strong proton‐donor solvents, both forms exist. The fluorescence spectra of these species exhibit blue shift in protic solvents. These shifts are well‐correlated with the polarity and the H‐donor ability of the solvent.  相似文献   

6.
The excitation and fluorescence spectra and the excited state lifetimes of pyrylium salts were studied in different polar solvents. An emission blue shift is observed when the temperature is lowered from 300 to 77 K. This phenomenon is believed to be due to solvent—solute interactions following changes in the electronic distribution in the excited state. At 77 K the excited state decay is faster than the solvent reorganization and the emission originates from the Franck—Condon state. At 300 K the solvent relaxation is now fast enough (about 50 ps) to allow the excited state to relax before emitting.  相似文献   

7.
Abstract —Our recent research on photochemiluminescence (PCL) of pigments in solutions is reviewed. PCL was observed in the course of photooxidation by oxygen of chlorophyll a , bacteriochlorophyll, protochlorophyll, their analogs, synthetic dyes and aromatic hydrocarbons. The PCL of chlorophyll was studied in detail. It depends on oxygen concentration, intensity of exciting light, pH, nature of pigments, solvents etc. The thermochemiluminescence was observed after illumination of liquid and solid pigment solutions at low temperature (down to - 170C). The excitation spectra of PCL coincide with the pigment absorption spectra. The PCL emission spectra in most cases differ from those of pigment fluorescence. Electron acceptors, electron donors, radical inhibitors and β-carotene quench PCL. The quenching efficiency of electron acceptors is similar to their action on the chlorophyll triplet state. The quenching effect of radical inhibitors and β-carotene correlates with their activity in reaction with singlet oxygen. The effect of quenchers on the chlorophyll fluorescence, photobleaching and pigment sensitized oxygenation was studied. Analysis of experimental data allowed the assumption that chemiluminescence accompanies the decomposition of labile pigment peroxides. The accumulation of peroxides is probably due to the reaction in the complex of pigment and singlet oxygen, formed as a result of energy transfer from photoexcited (triplet) pigment molecules to oxygen. The terminal chemiluminescence emission proceeds from the singlet excited states of molecules of pigments and products of their oxidation.  相似文献   

8.
Absorption and emission spectra of three azo sulfonamide dyes with various molecular structures have been studied in different solvents. The solute photo-physical behavior depends strongly on the solvent-solute interactions and solvent microenvironment. In order to understand the effect of intermolecular interactions on spectral behaviors of these dyes in different solvents and to conceive nature and extent of solvent-solute interactions the spectral variations were analyzed by the linear solvation energy relationships concept. In addition, by means of solvatochromic method the dipole moments of these dyes, in ground and excited states, were investigated.  相似文献   

9.
The photophysical properties of 2‐phenyl‐naphtho[1,2‐d][1,3]oxazole, 2(4‐N,N‐dimethylaminophenyl)naphtho[1,2‐d][1,3]oxazole and 2(4‐N,N‐diphenylaminophenyl) naphtho[1,2‐d][1,3]oxazole were studied in a series of solvents. UV–Vis absorption spectra are insensitive to solvent polarity whereas the fluorescence spectra in the same solvent set show an important solvatochromic effect leading to large Stokes shifts. Linear solvation energy relationships were employed to correlate the position of fluorescence spectra maxima with microscopic empirical solvent parameters. This study indicates that important intramolecular charge transfer takes place during the excitation process. In addition, an analysis of the solvatochromic behavior of the UV–Vis absorption and fluorescence spectra in terms of the Lippert–Mataga equation shows a large increase in the excited‐state dipole moment, which is also compatible with the formation of an intramolecular charge‐transfer excited state. We propose both naphthoxazole derivatives as suitable fluorescent probes to determine physicochemical microproperties in several systems and as dyes in dye lasers; consequence of their high fluorescence quantum yields in most solvents, their large molar absorption coefficients, with fluorescence lifetimes in the range 1–3 ns as well as their high photostability.  相似文献   

10.
Two novel pyrazoline derivatives, named 2,8-bis(1,3-diphenyl-pyrazoline-5-yl)dibenzofuran (A) and 2,8-bis(1-(4-bromophenyl)-3-phenyl-pyrazoline-5-yl)dibenzofuran (B), were synthesized and characterized by elemental analysis, NMR, MS and thermogravimetric analysis. The absorption and emission spectra of them were determined by experimental methods in different polar solvents and were computed using the density functional theory (DFT) and the time-dependent density functional theory (TDDFT) at the same time. The calculated absorption and emission wavelengths are in good agreement with the experimental data. The fluorescence quantum yields and fluorescence lifetimes of them in different polar solvents were studied by means of steady state and time resolved fluorescence. The calculated reorganization energy for hole and electron indicates that the two compounds are in favor of hole transport than electron transport. The results show the two compounds present high fluorescence quantum yields and excellent thermal stability. It makes them of great interest as novel fluorescent probes and optoelectronic materials.  相似文献   

11.
The influence of SDS upon the molecular properties of proflavine (3,6-diaminoacridine), acridine yellow (2,7-dimethyl-3,6-diaminoacridine) and methylene blue (3,7-bis-dimethylamino-phenothiazine) was studied comparatively to their properties in that of aqueous media. The absorption and emission spectra of the three dyes in SDS aqueous solution (1-100 mmol/l) were recorded. The spectroscopic data also allowed the evaluation of the critical micellization concentration (CMC), acidity constants in fundamental (pk(a)) and excited (pK(*)(a)) states, and lifetimes of excited singlet states.  相似文献   

12.
A new group of porphyrin-fullerene dyads with an azobenzene linker was synthesized, and the photochemical and photophysical properties of these materials were investigated using steady-state and time-resolved spectroscopic methods. The electrochemical properties of these compounds were also studied in detail. The synthesis involved oxidative heterocoupling of free base tris-aryl-p-aminophenyl porphyrins with a p-aminophenylacetal, followed by deprotection to give the aldehyde, and finally Prato 1,3-dipolar azomethineylide cycloaddition to C60. The corresponding Zn(II)-porphyrin (ZnP) dyads were made by treating the free base dyads with zinc acetate. The final dyads were characterized by their 1H NMR, mass, and UV-vis spectra. 3He NMR was used to determine if the products are a mixture of cis and trans stereoisomers, or a single isomer. The data are most consistent with the isolation of only a single configurational isomer, assigned to the trans (E) configuration. The ground-state UV-vis spectra are virtually a superimposition of the spectral features of the individual components, indicating there is no interaction of the fullerene (F) and porphyrin (H2P/ZnP) moieties in the ground state. This conclusion is supported by the electrochemical data. The steady-state and time-resolved fluorescence spectra indicate that the porphyrin fluorescence in the dyads is very strongly quenched at room temperature in the three solvents studied: toluene, tetrahydrofuran (THF), and benzonitrile (BzCN). The fluorescence lifetimes of the dyads in all solvents are sharply reduced compared to those of H2P and ZnP standards. In toluene, the lifetimes of the free base dyads are 600-790 ps compared to 10.1 ns for the standard, while in THF and BzCN the dyad lifetimes are less than 100 ps. For the ZnP dyads, the fluorescence lifetimes were 10-170 ps vs 2.1-2.2 ns for the ZnP references. The mechanism of the fluorescence quenching was established using time-resolved transient absorption spectroscopy. In toluene, the quenching process is singlet-singlet energy transfer (k approximately 10(11) s-1) to give C60 singlet excited states which decay with a lifetime of 1.2 ns to give very long-lived C60 triplet states. In THF and BzCN, quenching of porphyrin singlet states occurs at a similar rate, but now by electron transfer, to give charge-separated radical pair (CSRP) states, which show transient absorption spectra very similar to those reported for other H2P-C60 and ZnP-C60 dyad systems. The lifetimes of the CSRP states are in the range 145-435 ns in THF, much shorter than for related systems with amide, alkyne, silyl, and hydrogen-bonded linkers. Thus, both forward and back electron transfer is facilitated by the azobenzene linker. Nonetheless, the charge recombination is 3-4 orders of magnitude slower than charge separation, demonstrating that for these types of donor-acceptor systems back electron transfer is occurring in the Marcus inverted region.  相似文献   

13.
The effect of solvents on absorption and fluorescence spectra and dipole moments of coumarin 307 (C307) and coumarin 522B (C522B) have been studied extensively in various solvents, viz., general solvents, alcohols and binary mixtures (acetonitrile-benzene) at 298K. The bathchromic shift observed in absorption and fluorescence spectra of C307 and C522B with increasing solvent polarity indicates that transition involved are pi-->pi*. Solvatochromic correlations were used to obtain the ground and excited state dipole moments. The excited state dipole moments are observed to be greater than their ground state counterparts in all the solvents studied. Further, the experimentally obtained Deltamu were compared with those using normalized polarity terms E(T)(N) from Reichardt equation.  相似文献   

14.
Excimers     
Excimers are molecular associates that exist only in excited electronic states. They are therefore detectable only in emission spectra, and particularly in fluorescence spectra. Despite their short lifetimes, they are responsible for many photophysical and photochemical effects.  相似文献   

15.
《Chemical physics letters》1986,132(3):236-239
Fluorescence lifetimes in different solvents of several cyclobutenediylic dyes and electron-transfer rate constants from excited S1 states of the dyes to p-methylbenzendiazonium tetrafluoroborate were measured. Inter- and intra-molecular hydrogen bonding probably plays the most important role in the relaxation processes of the excited dyes.  相似文献   

16.
Neutral/zwitterionic form equilibrium, excited state wave functions, absorption and emission spectra of kynurenine (KN) in various solvents (water, methanol, ethanol, and dimethylsulfoxide) have been studied theoretically. The ground electronic state geometries have been optimized by density functional theory methods; the geometries of the first two singlets excited electronic states have been optimized using the CASSCF technique. The influence of the solvent was taken into account by the calculation of the solvation free energies using the Polarizable Continuum Model (PCM). The spectra of electronic absorption and fluorescence emission have been calculated by the CS‐INDO S‐CI and SDT‐CI methods [Momicchioli, Baraldi, and Bruni, Chem Phys, 1983, 82, 229]. The calculated data reproduce the experimental positions of maxima and the solvent‐induced shifts of the absorption and emission bands well. The energy gap between the two lowest excited states of KN increases from aprotic to protic solvents. This fact suggests that the “proximity effect” cannot be responsible for the ultrafast decay of KN fluorescence in protic solvents. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

17.
Preferential solvation of a solvatochromic probe has been studied in binary mixtures comprising of a non-protic and a protic solvent. The non-protic solvents employed are carbon tetrachloride (CCl(4)), acetonitrile (AcN) and N,N-dimethyl formamide (DMF) and the protic solvents are methanol (MeOH) and ethanol (EtOH). The probe molecule exhibits different spectroscopic characteristics depending upon the properties of the solubilizing media. The observed spectral features provide an indication of the microenvironment immediately surrounding the probe. Solvatochromic shifts of the ground and excited states of the probe were analysed by monitoring the charge transfer absorption band and the fluorescence emission spectra in terms of the solute-solvent and solvent-solvent interactions. Fluorescence emission spectra show the dual emission due to excited state proton transfer nature of the probe molecule. The effect of solvent and the excitation energy on dual emission are also studied. The observed magnitude of the Stokes shift in the above solvents has been used to deduce experimentally the dipole moment ratio of the probe molecule for the excited state to the ground state. The dipole moment of excited state is higher than the ground state.  相似文献   

18.
The influence of SDS upon the molecular properties of proflavine (3,6-diaminoacridine), acridine yellow (2,7-dimethyl-3,6-diaminoacridine) and methylene blue (3,7-bis-dimethylamino-phenothiazine) was studied comparatively to their properties in that of aqueous media. The absorption and emission spectra of the three dyes in SDS aqueous solution (1–100 mmol/l) were recorded. The spectroscopic data also allowed the evaluation of the critical micellization concentration (CMC), acidity constants in fundamental (pka) and excited (pK*a) states, and lifetimes of excited singlet states.  相似文献   

19.
Ground and excited state inter- and intramolecular proton transfer reactions of a new o-hydroxy Schiff base, 7-ethylsalicylidenebenzylamine (ESBA) have been investigated by means of absorption, emission and nanosecond spectroscopy in different protic solvents at room temperature and 77 K. The excited state intramolecular proton transfer (ESIPT) is evidenced by a large Stokes shifted emission (approximately 11000 cm(-1)) at a selected excited energy in alcoholic solvents. Spectral characteristics obtained reveal that ESBA exists in more than one structural form in most of the protic solvents, both in the ground and excited states. From the nanosecond measurements and quantum yield of fluorescence we have estimated the decay rate constants, which are mainly represented by nonradiative decay rates. At 77 K the fluorescence spectra are found to be contaminated with phosphorescence spectra in glycerol and ethylene glycol. It is shown that the fluorescence intensity and nature of the species present are dependent upon the excitation energy.  相似文献   

20.
The ground state (μ(g)) and the excited state (μ(e)) dipole moments of two coumarin laser dyes, coumarin 440 and 460, were studied at room temperature in various solvents, viz., general solvents, alcohols and liquid crystals at 298 K. In this work, we report dipole moment of laser dyes in different anisotropic (liquid crystal) and isotropic environments for understanding the effects of environments on the molecular dipole moment and comparing them. Ground and excited state dipole moments of coumarin dyes were evaluated by means of solvatochromic shift method. It was observed that dipole moment values of excited states (μ(e)) were higher than the corresponding ground state values (μ(g)) in all media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号