首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
超流氦浴中的热波传热研究   总被引:1,自引:0,他引:1       下载免费PDF全文
张鹏  王如竹  村上正秀 《物理学报》2002,51(6):1350-1354
热波传热机制是超流氦传热非常重要的一个方面.在小热流密度的情况下,超流氦中的热波完全保持加热热流的波形,热量的传输完全靠热波来完成;随着热流密度的增加到一定程度,会在超流氦浴中激发量子涡旋.量子涡旋使热波发展成为热激波.在开放氦浴中,热波的波形不同于狭窄通道里的热波,在热波的尾部会出现一个冷却波;并且随着加热时间的变化,冷却波的形状和幅度会发生很大的变化.运用二流体模型和涡旋方程对超流氦中的热波进行了计算,实验结果与计算结果吻合得较好. 关键词: 超流氦 热波 量子涡旋 热激波  相似文献   

2.
过增元  曹炳阳 《物理学报》2008,57(7):4273-4281
根据爱因斯坦的质能等效关系式,热能具有的等效质量称为热质,从而在固态和气态介质中分别建立了声子气质量和热子气质量的概念.应用牛顿定律建立了含有驱动力、阻力和惯性力的热质(声子气或热子气)运动的动量守恒方程.由于热量在介质中的传递本质上就是热质(声子气和热子气)在介质中的运动,所以热质动量守恒方程就是普适的导热定律,能够统一描述各种条件下的导热规律.当热流密度不是很大从而热质惯性力可以忽略时,热质动量守恒方程就退化为傅里叶导热定律,这表明傅里叶导热定律是特殊条件下的导热定律,对于微纳尺度条件下的导热,热流密度可以极高,由速度空间变化引起的惯性力不能忽略,在稳态导热情况下也将出现非傅里叶导热,此时在计算或者实验中不能用热流密度除温度梯度求导热系数.在超快速加热条件下,必需考虑惯性力,与基于CV导热模型的波动方程相比,普适的导热定律增加了因速度空间变化引起的惯性力项,所以在介质中热波叠加时不会出现产生负温度的非物理现象,表明基于热质运动概念的普适导热定律更为合理. 关键词: 傅里叶导热定律 普适导热定律 热质运动 非傅里叶导热  相似文献   

3.
实验研究燕尾形轴向槽道热管启动/关闭及负荷变化的瞬态响应特性。建立了燕尾形轴向槽道热管的热阻理论预测模型,分析工作温度和热负荷及对热管总热阻的影响。结果表明:热管在负荷突然增加或减小时,响应特性良好;热管在启动过程中,热管的蒸发段、绝热段和冷凝段的温度都在增大;总热阻随热负荷的增大而增大;然而,总热阻受工作温度的影响较小;比较总热阻和平均温差的实验测量和计算值,两者符合较好。  相似文献   

4.
Manipulating thermal conductivities at will plays a crucial role in controlling heat flow. By developing an effective medium theory including periodicity, here we experimentally show that nonuniform media can exhibit quasi-uniform heat conduction. This provides capabilities in proposing Janus thermal illusion and illusion thermal rectification. For the former, we study, via experiment and theory, a big periodic composite containing a small periodic composite with circular or elliptic particles. As a result, we reveal the Janus thermal illusion that describes the whole periodic system with both invisibility illusion along one direction and visibility illusion along the perpendicular direction, which is fundamentally different from the existing thermal illusions for misleading thermal detection. Further, the Janus illusion helps to design two different periodic systems that both work as thermal diodes but with nearly the same temperature distribution, heat fluxes and rectification ratios, thus being called illusion thermal diodes. Such thermal diodes differ from those extensively studied in the literature, and are useful for the areas that require both thermal rectification and thermal camouflage. This work not only opens a door for designing novel periodic composites in thermal camouflage and heat rectification, but also holds for achieving similar composites in other disciplines like electrostatics, magnetostatics, and particle dynamics.  相似文献   

5.
The advent of transformation thermotics has seen a boom in development of thermal metamaterials with a variety of thermal functionalities,including phenomena such as thermal cloaking and camouflage.However,most thermal metamaterials-based camouflage devices only tune in-plane heat conduction,which may fail to conceal a target from out-of-plane detection.We propose an adaptive radiative thermal camouflage via tuning out-ofplane transient heat conduction,and it is validated by both simulation and experiment.The physics underlying the performance of our adaptive thermal camouflage is based on real-time synchronous heat conduction through the camouflage device and the background plate,respectively.The proposed concept and device represent a promising new approach to fabrication of conductive thermal metamaterials,providing a feasible and effective way to achieve adaptive thermal camouflage.  相似文献   

6.
The Fourier equation of heat conduction predicts a paradox that the effect of a thermal impulse (e.g. the thermal effect in pulse laser) in an infinite medium; i.e., a thermal impulse is propagated in an infinite velocity. In order to solve the thermal transport paradox, C. W. Ulbrich and M. Chester have proposed the modification heat conduction equation respectively from different macroscopic viewpoint. This paper derived the modification heat conduction equation according to phonon model and quantum mechanics from microscopic viewpoint.  相似文献   

7.
孙良奎  于哲峰  黄洁 《物理学报》2015,64(22):224401-224401
基于变换热力学, 采用坐标斜变换和旋转变换得到定向传热结构单元的热导率分布表达式, 并利用隔热材料和铜分层排布实现了定向传热结构单元. 将定向传热结构单元周期性排列, 得到二维平板定向传热结构. 数值计算结果表明: 当外部热流流向该结构上表面时, 热量主要向两侧流动, 从而使上下表面保持低温. 与同厚度二氧化硅气凝胶隔热材料相比, 上表面温度降低33.3%, 下表面温度降低4.3%, 而侧面温度上升40.1%. 定向传热结构上表面温度的降低表明能够及时导走热量, 从而降低上表面的红外辐射; 下表面温度的降低说明定向传热结构比二氧化硅隔热材料具有更好的隔热效果; 上表面热量主要向两侧传输造成侧面温度急剧升高, 有利于热能的有效利用. 定向传热结构在红外隐身、热防护领域具有潜在的应用价值.  相似文献   

8.
固态金属中声子热传递的分子动力学模拟研究   总被引:2,自引:0,他引:2  
固态金属中的热传递是声子和自由电子共同作用的结果。自由电子引起的热导率可以通过电导率,利用Wiedemann-Franz定律得到,声子引起的热导率目前仍然不能进行实验测量,只能借助其他方法来研究。本文采用非平衡分子动力学(NEMD)方法,用镶嵌原子方法(EAM)势能模型,模拟计算了不同厚度(1.760-10.56nm)金属镍薄膜中由于声子-声子作用引起的热导率。然后根据纳米厚度金属薄膜的热导率借助关联式推到宏观尺度下由于声子-声子作用引起的热导率。结果表明,对于纳米厚度金属薄膜,由于声子-声子作用引起的热导率比块体金属镍的热导率小一个数量级;薄膜厚度越小,声子-声子作用引起的热导率越小;对于块体金属镍,由于声子-声子作用引起的热导率约占其总热导率的33.0%左右。  相似文献   

9.
Accurate measurement of thermal conductivity is essential to determine the thermoelectric figure‐of‐merit, zT. Near the phase transition of Cu2Se at 410 K, the transport properties change rapidly with temperature, and there is a concurrent peak in measured heat capacity from differential scanning calorimetry (DSC). Interpreting the origin as a broad increase in heat capacity or as a transient resulted in a three‐fold difference in the reported zT in two recent publications. To resolve this discrepancy, thermal effusivity was deduced from thermal conductivity and diffusivity measurements via the transient plane source (TPS) method and compared with that calculated from thermal diffusivity and the two interpretations of the DSC data for heat capacity. The comparison shows that the DSC measurement gave the heat capacity relevant for calculation of the thermal conductivity of Cu2Se. The thermal conductivity calculated this way follows the electronic contribution to thermal conductivity closely, and hence the main cause of the zT peak is concluded to be the enhanced Seebeck coefficient. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

10.
基于热质与热质势的概念,研究了稳态条件下的导热规律.结果表明:热量在输运过程中受到来自热质势场的驱动力以及来自介质的阻力,当两者平衡时,热量的输运规律满足傅立叶导热定律;当惯性力不能被忽略从而两者不平衡时,热量将被加速,热流密度和温度梯度之间的线性关系不再成立,表现出明显的非傅立叶效应.用数值模拟定量地研究了非傅立叶效应对稳态导热过程的影响.  相似文献   

11.
The density function perturbation theory (DFPT) is employed to study the linear thermal expansion and heat capacity at constant pressure (with the quasiharmonic approximation) for wurtzite GaN. The calculated results of linear thermal expansion coefficient and heat capacity at constant pressure are compared with the available experimental data in a wide temperature range. Generally these properties calculated agree well with experimental data except at high temperature, thus it suggests the thermal expansion and heat capacity can be well calculated from this first-principle approach.  相似文献   

12.
The low thermal conductivity of the solid sorbents is one of the major drawbacks of the sorption heat pumps development. A better thermal transfer in the adsorber fixed beds is required to obtain a decreased time of the processing cycles and thus a reduced adsorber size per unit of power. Small improvements in the parameters of thermal transfer were obtained with unconsolidated porous mixtures such as bimodal mixtures and metallic foams. New consolidated materials made of metallic foam and zeolite were developed. The measurements of the thermal conductivity and of the wall heat transfer coefficient show a great improvement in the thermal transfer quality. Resistances to mass transfer appear but they are consistent with the adsorption heat pump process. With this type of composite material it seems possible to reduce the adsorber size by a factor from 5 to 10.  相似文献   

13.
换热器性能分析新方法   总被引:12,自引:0,他引:12       下载免费PDF全文
柳雄斌  过增元 《物理学报》2009,58(7):4766-4771
鉴于以加热或冷却为目的的热量传递过程,其不可逆性应以NFDA1的耗散率来度量,为此可以用换热器中的NFDA1耗散率定义换热器的当量热阻,它既包含换热器中的传热热阻,还包含了由非逆流形式和非平衡流引起的附加热阻. 换热器当量热阻的倒数称之为换热器的当量热导. 通过NFDA1耗散定义的换热器当量热阻建立了传热不可逆性与有效度的联系,并导得了换热器有效度与当量热导(热阻)和热容量流比的统一函数关系式,它适用于不同流程布置的换热器. 因此,有效度-热导(热阻)方法能更方便于不同类型换热器性能的分析和比 关键词: 换热器 热阻 耗散 熵产  相似文献   

14.
To study a behavior of the thermal conductivity near Tc specific heat and thermal diffusivity of the YBa2Cu3O7−δ high-Tc ceramics were simultaneously measured. Close to Tc = 92.30 K the thermal diffusivity and the thermal conductivity discovered minima and the specific heat – maximum. Quantitative analysis of the influence of thermodynamical fluctuations showed the same power laws with Gaussian exponent equal to 0.5 and existing of crossover from the 3D Gaussian to 3D XY critical behavior in the specific heat and thermal conductivity at the approach to Tc. To explain the minimum in thermal conductivity at Tc we propose a mechanism of scattering of phonons on the superconducting fluctuations.  相似文献   

15.
Thermographic lock-in investigation of thermal interaction between a thermal probe used in scanning thermal microscopy and a thin composite sample is used for estimating the relative fraction of heat flux transferred to the sample by conduction through the air and by direct local contact. The latter is determined by vector subtraction of out-of-contact data from in-contact data, for different modulation frequencies. It represents only 8% of the total modulated heat flux dissipated by the probe, and is frequency-independent. The heat transfer by air conduction varies between 23% and 6% for f = 0.2...40 Hz with a broad equivalent heat source radius of r 0.2 mm.  相似文献   

16.
ntroduction  Inapplicationsandstudiesoflaserheattreatmentonmaterialsurface,thethermalinteractionbetweenlaserandmaterialsisanessentialproblem.Theactingtimeoflaserheattreatmentisshortanditsheatedzoneisonlylocalizedwithinasmallspacenearthelaserirradiat…  相似文献   

17.
It is a conventional method to regard laser-iradiated object as a semi-infinite medium with invariable thermal physical property parameters for approximate analyses of thermal acting of laser heat treatment. So far, 2 and have been taken as the thermal diffusion distance and the thermal diffusion velocity respectively, at the time t after heat fluctuation in materials with a thermal diffusion coefficient α, and as a result, the feasibility of the approximately estimating method about semi-infinite medium is judged. This paper indicates that, due to quantitative investigation of heat energy diffusion, the thermal diffusion distance of 3 and the thermal diffusion velocity of 1.5 can more accurately describe the physical process of heat conduction. Finally, an applied example of approximately estimating the temperature field of laser heat treatment is presented.  相似文献   

18.
In the present work, conjugate heat transfer in a rectangular cavity with a heated moving lid is investigated using the lattice Boltzmann method (LBM). The simulations are performed for incompressible flow, with Reynolds numbers ranging from 100 to 500, thermal diffusivity ratios ranging from 1 to 100, and Prandtl numbers ranging from 0.7 to 7. A uniform heat flux through the top of the lid is assumed. Results show that LBM is suitable for the study of heat transfer in conjugate problems. Effects of the Reynolds number, the Prandtl number and the thermal diffusivity ratio on hydrodynamic and thermal characteristics are investigated and discussed. The streamlines and temperature distribution in flow field, dimensionless temperature and Nusselt number along the hot wall are illustrated. The results indicate that increase of thermal diffusivity yields the removal of a higher quantity of energy from lid and its temperature decreases when increasing the Reynolds and the Prandtl numbers.  相似文献   

19.
We study a scheme of thermal management where a three-qubit system assisted with a coherent auxiliary bath (CAB) is employed to implement heat management on a target thermal bath (TTB). We consider the CAB/TTB being ensemble of coherent/thermal two-level atoms (TLAs), and within the framework of collision model investigate the characteristics of steady heat current (also called target heat current (THC)) between the system and the TTB. It demonstrates that with the help of the quantum coherence of ancillae the magnitude and direction of heat current can be controlled only by adjusting the coupling strength of system-CAB. Meanwhile, we also show that the influences of quantum coherence of ancillae on the heat current strongly depend on the coupling strength of system—CAB, and the THC becomes positively/negatively correlated with the coherence magnitude of ancillae when the coupling strength below/over some critical value. Besides, the system with the CAB could serve as a multifunctional device integrating the thermal functions of heat amplifier, suppressor, switcher and refrigerator, while with thermal auxiliary bath it can only work as a thermal suppressor. Our work provides a new perspective for the design of multifunctional thermal device utilizing the resource of quantum coherence from the CAB.  相似文献   

20.
Local convective heat flux in turbulent thermal convection is obtained from simultaneous velocity and temperature measurements in an aspect-ratio-one convection cell filled with water. It is found that fluctuations of the vertical heat flux are highly intermittent and are determined primarily by the thermal plumes in the system. The experiment reveals a unique mechanism for the heat transport in turbulent convection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号