首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The surface vibrations of CO adsorbed on Pt(111) single crystal surfaces at 320 K have been studied by electron-energy-loss spectroscopy. At low coverages two vibration modes at 58 and ∼260 meV are observed. For exposures >0.2 Langmuir two additional modes at 45 and 232 meV develop. Considering also the observed LEED structures these vibrations are attributed to CO molecules being adsorbed upright in on-top and bridge sites, respectively.  相似文献   

3.
4.
基于密度泛函理论和周期平板模型研究了NO在Pt(111)表面的吸附,通过扫描隧道显微镜(STM)的理论计算分析了吸附的结构特征.计算得到的Pt-NO伸缩振动(圪)频率基本保持不变,受阻平动(v3,v4)和受阻转动(us,v6)完全是简并的.采用CI-NEB方法讨论了NO在Pt(111)表面的离解过程,研究结果表明NO在Pt(111)表面的离解比较困难,必须克服2.29eV的能垒.  相似文献   

5.
《Applied Surface Science》1986,25(3):333-340
Electron stimulated desorption of ionic species from CO adsorbed on Pt(111) has been studied and comparison made with EELS results. The “on-top” site which, according to EELS data, fills first is observed to yield O+ ion. The bridge adsorption site appears to release CO+ during electron bombardment. Coadsorption of H2 and CO was also examined and compared with the polycrystalline platinum case. Only very weak coadsorption effects are seen on the Pt(111) surface, as evidenced by presence of a weak low energy component associated with the O+ ESD energy distribution.  相似文献   

6.
C. Klünker  M. Balden  S. Lehwald  W. Daum   《Surface science》1996,360(1-3):104-111
Optical sum-frequency generation (SFG) is used to characterize CO stretching vibrations on Pt(111) and Pt(110) surfaces. Different adsorption sites (terminal, bridge and step sites) are identified in the SFG spectra of CO on Pt(111), in good quantitative agreement with previous infrared reflection-absorption experiments on this system. For CO on Pt(110) we only observe CO molecules on terminal sites. The measured CO stretching vibration frequencies on Pt(110), both for low and high coverages, are at variance with the results of previous infrared studies. Our SFG results for CO on Pt(110) are confirmed by independent EELS measurements which, in addition, also reveal the frustrated rotational mode and the metal-CO vibration. The measured frequency of 2065 cm−1 for low CO coverage on Pt(110)-(1 × 2) is consistent with a previously proposed empirical relation between the frequency of an isolated adsorbed CO molecule and the coordination number of the binding Pt surface atom.  相似文献   

7.
Nuclear microanalysis (NMA) has been used to determine the absolute coverages of oxygen and CO adsorbed on Pt(111). The saturation oxygen coverage at 300 K is 3.9 ± 0.4 × 1014 O atoms cm?2 (θ = 0.26 ± 0.03), confirming the assignment of the LEED pattern as p(2 × 2). The saturation CO coverage at 300 K is 7.4 ± 0.3 × 1014 CO cm?2 (θ = 0.49 ± 0.02). The low temperature saturation CO coverages on Pt(100), (110) and (111) surfaces are compared.  相似文献   

8.
The interaction of NO with CO and with H2 on Pt(100) was studied by temperature programmed desorption (TPD), isothermal desorption mass spectrometry, and low energy electron diffraction (LEED), TPD of NO and CO coadsorbed at 120 K yields almost complete reaction with both N2 and CO2 products desorbing as sharp, simultaneous peaks at ≈ 410 K. with full widths at half maximum as narrow as 3 K. Isothermal desorption mass spectrometry yields N2 and CO2 rates that exhibit a maximum with time. Both experiments indicate that the reaction mechanism is autocatalytic. Annealing NO-CO adlayers formed at 120 K to temperatures above 300 K causes the subsequent N2 and CO2 TPD peaks to broaden.'TPD of NO coadsorbed with H2 yields sharp N2 and H2O product peaks that closely resemble the N2 and CO2 peaks observed in the NO + CO reaction. LEED experiments during TPD and isothermal desorption showed that the (1 × 1) → hex substrate phase transformation sometimes accompanies desorption of N2 and CO2. The TPD and isothermal desorption results can be fit by two simple models: chemical autocatalysis, in which an intermediate chemical species participates in a “chain propagation” reaction, and structural autocatalysis, which involves the formation of a reactive intermediate structure involving Pt atom displacements.  相似文献   

9.
CO adsorption on clean and oxidized Pt3Ti(111) surfaces has been investigated by means of Auger Electron Spectroscopy (AES), Thermal Desorption Spectroscopy (TDS), Low Energy Electron Diffraction (LEED) and High Resolution Electron Energy Loss Spectroscopy (HREELS). On clean Pt3Ti(111) the LEED patterns after CO adsorption exhibit either a diffuse or a sharp c(4 × 2) structure (stable up to 300 K) depending on the adsorption temperature. Remarkably, the adsorption/desorption behavior of CO on clean Pt3Ti(111) is similar to that on Pt(111) except that partial CO decomposition on Ti sites and partial CO oxidation have also been evidenced. Therefore, the clean surface cannot be terminated by a pure Pt plane. Partially oxidized Pt3Ti(111) surfaces (< 135 L O2 exposure at 1000 K) exhibit a CO adsorption/desorption behavior rather similar to that of the clean surface, showing again a c(4 × 2) structure (stable up to 250 K). Only the oxidation of CO is not detectable any more. These results indicate that some areas of the substrate remain non-oxidized upon low oxygen exposures. Heavily oxidized Pt3Ti(111) surfaces (> 220 L O2 exposure at 1000 K) allow no CO adsorption indicating that the titanium oxide film prepared under these conditions is completely closed.  相似文献   

10.
11.
12.
A.M. Baró  H. Ibach 《Surface science》1981,103(1):248-256
We present the angular distribution of inelastic intensities corresponding to the excitation of the vibrational modes of CO chemisorbed on Pt(111). The experimental values are compared with those predicted by dipole scattering. All the vibrational modes, including the C-metal, stretch, show experimental values larger than theoretical ones. The difference is attributed to vibrational excitation by impact scattering. The impact scattering cross section is found to be energy dependent and increases for low primary energies (2 eV). The differential cross section is, however, smaller than that observed for resonant scattering in free CO.  相似文献   

13.
14.
The adsorption of CO on Pt(111) between 85K and 300K has been studied by infrared-reflection-absorption spectroscopy together with TPD and LEED. The intensity of the absorption band due to the CO stretch of the linear species shows a maximum at the formation of the (√3 × √3)R30° LEED pattern followed by a minimum at the c(4×2) structure during the adsorption of CO at low temperatures (150K). The absorption band due to the C-O stretch of the bridging species appears only after the formation of the (√3 × √3)R30° pattern and reaches maximum intensity at the c(4×2) structure. Adsorption of CO to higher coverages (corresponding to the compression structures) broadens and shifts this absorption band. At higher temperatures (150K) a third peak is observed at 40cm−1 below the peak due to the bridging species and is attributed to adsorption in the three-fold sites. At 300K both peaks in this region are very broad. The intensity data differs from that measured with EELS (ref.1) and favors a “faultline” structure of the type proposed by Avery (ref.2). Together with the additional information from bandwidths it is possible to distinguish between the various structural models. The results obtained here may also be important in explaining data from other systems such as CO/Cu.  相似文献   

15.
16.
The adsorption of carbon monoxide on Pt(111) was studied using polarization modulation infrared reflection absorption spectroscopy (PM-IRAS) and sum frequency generation (SFG) spectroscopy. Two CO on-top signals at 2110 cm? 1 and 2097 cm? 1 have been detected under continuous CO exposure in a pressure range from 10? 7 to 100 mbar and at temperatures between 200 K and 300 K. The formation of the higher wavenumber signal is found to be kinetically limited below 200 K and by the presence of a stable c(4 × 2) adlayer in UHV. On the basis of the results presented in this study and previous experimental findings the two on-top signals are related to different CO compression layers on Pt(111) with θ > 0.5, hexagonal Moiré lattices and rectangular coincident site lattices.  相似文献   

17.
Reflection absorption infrared spectroscopy has been used in conjunction with LEED and surface potential measurements to study low temperature CO adsorption on the oxidised Cu surfaces Cu(111)O|32?2|, Cu(110)O(2 × 1) and Cu(110)Oc(6 × 2). On all three surfaces adsorption at 80 K yields surface potential changes in excess of 0.6 V and does not lead to the formation of an ordered overlayer. At high coverages the adsorption enthalpy is lower than on the clean surfaces. Infrared spectra show the growth of a doublet band with components initially at 2100 and 2117 cm?1 on the oxidised Cu(111) surface. Similar features seen on the oxidised Cu(110) surfaces are accompanied by a band at 2140 cm?1: a very weak band at the same frequency on oxidised Cu(111) is attributed to defect sites. Studies of the temperature dependence of the spectrum from oxidised Cu(111) lead to the conclusion that two different binding sites are occupied. Spectra of 12CO13CO mixtures show that the molecules occupying these sites are in close proximity to each other, and that the spectrum is subject to large but opposing coverage-dependent frequency shifts.  相似文献   

18.
The potential energy and surface dipole were calculated as a function of the geometry of the coadsorbed systems using the cluster method and theoretical oscillation frequencies and work function changes were compared with experiment. It was found that the K fills unoccupied Pt 5d states and reduces the local polarizability of the metal. The H2O molecule binds to the K atom, such that the H atoms point towards the surface inducing an increase in the work function. For the CO molecule a charge transfer (KCO) through the surface stabilizes the bond and induces a change of adsorption place (on-topbridge). The K increases the tendency to H2 dissociation because of the local decrease of the work function. Zero-point energy effects add important dynamical features to the electronic H2- surface interaction. Three examples for the Pt(111)-H2 system are presented: (i) A virtual attractive potential well produced by the softening of the H-H bond near the surface, (ii) a virtual potential barrier for dissociation due to the hindering of molecular rotations at the surface, and (iii) a change in the apparent surface temperature in H2 desorption processes.  相似文献   

19.
The binding states and sticking coefficients of CO and H2 on clean and oxide covered (111)Pt are examined using flash desorption mass spectrometry and Auger electron spectroscopy (AES). On the clean surface at 78 K there is one major binding state of CO with a desorption activation energy which decreases with coverage plus a second smaller state, while H2 exhibits three binding states with peak temperatures of 140, 230 and 310 K and saturation density ratios of 0.5 : 1 : 1. Desorption kinetics of CO are consistent with a first order state with a normal pre-exponential factor of 1013 ± 1 sec?1, while all three peaks of H2 are broader than expected. Interpretations in terms of anomalous pre-exponential factors, coverage dependent desorption activation energies, and desorption orders are considered. On the oxidized surface saturation densities of both gases are nearly identical to those on the clean surface, but desorption temperatures are increased significantly and the initial sticking coefficient on the oxide decreases slightly for CO and increases slightly for H2.  相似文献   

20.
《Surface science》1990,236(3):L372-L376
A new low temperature displacement mechanism for CO on the Pt(111) surface has been observed in the presence of high pressures of hydrogen (0.001 to 0.1 Torr H2). Temperature-programmed fluorescence yield near-edge spectroscopy (TP FYNES) was used to continuously monitor the CO coverage as a function of temperature both with and without hydrogen. For hydrogen pressures above 0.01 Torr, removal of CO begins at 130 K (Ed = 10.6 kcal/mol) instead of near the desorption temperature of 400 K (Ed = 26 kcal/mol). The large decrease in CO desorption energy appears to be caused by substantial repulsive interactions in the compressed monolayer induced by coadsorbed hydrogen. The new low temperature CO desorption channel appears to be caused by displacement of the compressed CO adlayer by coadsorbed hydrogen. In addition, the desorption activation energy for the main desorption channel of CO near 400 K is lowered by ~ 1 kcal/mol for hydrogen pressures in the 0.001 to 0.1 Torr range. These new results clearly emphasize the importance of in-situ methods capable of performing kinetic experiments at high pressures on well characterized adsorbed monolayers on single crystal surfaces. High coverages of coadsorbed hydrogen resulting from substantial overpressures may substantially modify desorption activation energies and thus coverages and kinetic pathways available even for strongly chemisorbed species. These phenomena may play an important role in surface reactions which occur at high pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号