首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new modification of molecular beam relaxation spectrometry (MBRS) of surface processes is described making use of partial modulation in order to study nonlinear processes: a constant particle beam is directed towards the catalyst surface, the surface temperature is modulated due to absorption of a modulated beam of UV light, reaction products are analyzed by use of phase sensitive mass spectrometric detection. The application of the method is shown by a study of catalytic decomposition of methanol on polycrystalline NiO. Formation of CO was found to be a monomolecular, formation of H2 and H2O bimolecular processes. The resulting mechanism may be described as follows:
Rate constants in dependence from surface temperature T0 are η = 1.8 × 103exp(?46RTokJmol); kd1 = 1.8 × 1010exp(?92RTl0kJmol) s?1; kd2 = 1.2 × 10?2exp (?88RT0kJmol) cm2 particles?1 s?1; kd3 = 3.5 × 10?4exp(?88RT0kJmol) cm2 particles?1 s?1. Average surface residence times of the intermediates are: 27 ? τHCO \? 1 ms at 550 ? T0 ? 650 K; 42 ? τH ? 7 ms at 540 ?T0 ? 610 K; 177 ? τOH ? 19 ms at 550 ? T0 ? 645 K.  相似文献   

2.
The catalytic decomposition of formic acid by a polycrystalline platinum surface was studied by use of modulated molecular beam techniques with mass spectrometric phasesensitive detection. Kinetic information about elementary surface reaction steps was obtained. The formation of CO2 was found to be a monomolecular, whereas that of D2 was a bimolecular process. The resulting reaction mechanism may be described as follows:
The rate constants in dependence from the surface temperature t0 are η = 7.1 × 103exp(?9.9RT0kcal/mole),kd1 = 6.3 × 107exp(?10.2RT0kcal/mole) (sec?1),kd2 = 3.2 × 10?8exp(?9.3RT0kcal/mole) (particles?1sec?1cm2). The sticking probability η is provided by the temperature dependence of the intensity of the nonreactive scattered formic acid molecules; the rate constants kd1 and kd2 are derived from the measured phase shift between reactive and nonreactive scattered particles. From the phase angle ?, the average surface residence time τ of the intermediates is computed: 3.7 ? τDCOO ? 0.41 msec (418 ? T0 ? 505 K), 31.8 ? τD ? 11.6 msec (418 ? T0 ? 460 K). The difference between τD and τDCOO is because of the different molecularity of desorption.  相似文献   

3.
Using a novel diffusion-evaporation method, the self-diffusion coefficient of manganese in manganous sulphide has been determined as a function of temperature (1073–1373 K) in equilibrium with the metallic phase. It has been shown that the activation energy of this process at constant sulphur activity amounts to 269 kJ/mol and the self-diffusion coefficient is the following function of temperature and sulphur vapour pressure: DMn=0.252 P?16S2 exp(-269kJ/mol/RT). Diffusion of Mn2+ cations in Mn1+yS proceeds via the interstitialcy mechanism and the activation enthalpy of successive jumps of these defects, δHm is equal to 118 kJ/mol. It has been demonstrated that the mobility of interstitial cations in the Mn1+yS lattice does not depend on their concentration and the diffusion coefficient of these defects has the following function of temperature: Di=0.759 exp(-118 kJ/mol/RT).  相似文献   

4.
The permeability time-lag method has been used to measure the temperature dependence of the diffusivity of hydrogen in platinum in the temperature range 558–936°C. In this temperature range the diffusivity D was found to be represented by the Arrhenius relation,
D = (6.47±1.73) × 10?7exp?QRTm2sec
where Q = 26.3 ± 2.3 kJmol.Measurements of the absolute permeation flux in the steady state condition yield values for the permeability coefficient and the solubility. The solubility values obtained from the permeability flux determinations show discrepancies when compared to solubilities determined by direct equilibration techniques. This discrepancy is briefly discussed.  相似文献   

5.
6.
The mean residence time, τi, of potassium ions on “clean” and oxygenated tungsten has been measured, together with the ionization efficiency, as a function of surface temperature T by using incident K beams of low intensity (109–1012 atoms cm?2 s?1). For T higher than ~900 K the observed τi followed Frenkel's equation τi = τi0exp (QikT) as usual and the agreement of the ionic desorption energy Qi and of the pre-exponential factor τi0 with the corresponding values of previous experiments was quite satisfactory. Below 830 ~ 910 K, where a steep drop of ionization efficiency began to be noticeable, Arrhenius plots of τi deviated considerably from linearity. The apparent increment of the desorption energy was shown to be nearly equal to the decrement of thermionic work function of tungsten as obtained from the ionization efficiency and Saha-Langmuir equation. The increase of surface coverage by potassium was accordingly taken as the main cause of the departure of Arrhenius plots from linearity. Under certain conditions of incident beam intensity and surface temperature τi was observed to make an abrupt change from a higher to a lower value — a difference expressed as 100–140 meV in terms of the difference in ionic desorption energy. This peculiar phenomenon was attributed to the phase change of adsorbed potassium on tungsten.  相似文献   

7.
Pure Al(acac)3 and Co(acac)3 exhibit a first-order phase transition at 140 ± l K and 30 ± l K respectively. At the phase transition the unit cell triples, but the space-group remains P21c. The unit cell dimensions at 90 K and at room temperature in parenthesis are: a = 41.17 (14.07) Å; b = 7.42 (7.57) A?;c = 22.70 (23.20) A?; β = 135.7 (135.8). From epr measurements on Cr doped Al(acac)3 and Co(acac)3 it appeared that at the phase transition the molecules in the lattice are rotated over small angles towards new orientations. The paramagnetic parameters showed small deviations from those at room temperature, except for the rhombic parameter E. By calorie methods the transition enthalpy of Al(acac)3 was determined to be 36.8 ± 0.4J mol?1. From the T, X phase diagram of the binary system Al(acac)3-Co(acac)3 as determined by means of epr measurements for Co(acac)3 a transition enthalpy of 17.4 ± 4.8J mol?1 was estimated. The use of a paramagnetic ion as a probe for solid-solid phase transitions may have conceivable wider applications.  相似文献   

8.
Electrical conductivity measurements on nickel oxide have been performed at high temperatures (1273 K<T< 1673 K) and in partial pressures of oxygen ranging from Po2 = 1.89 × 10?4 atm to Po2 = 1 atm. The po21n dependence of the conductivity decreases from about 14 for Po2 = 1 atm to smaller values for lower partial pressures of oxygen. The activation enthalpy for conduction increases for decreasing oxygen partial pressures (from 22.5 kcal mol?1 at Po2 = 1 atm to 26.0 kcal mol?1 for Po2 = 1.89 × 10?4 atm). This behaviour can be explained by the simultaneous presence of singly and doubly ionized nickel vacancies, with different energies of formation.Furthermore, chemical diffusion coefficient measurements have been performed in the same temperature range, using the conductivity technique, and leading to the result:
D? = 0.244 exp (?36,600RT) cm2 s?1
.  相似文献   

9.
Using electrical conductivity measurements in the temperature range 650–1100°C and for oxygen pressure greater than 10?6atm., the variation of the chemical diffusion coefficient in cuprous oxide with temperature has been determined as:
D? = 1.2 10?3exp (? 7800RT) cm2 sec?1
.Taking into account the nature of the prevailing defects in cuprous oxide one can show that D? ?DCu[VxCu]. This relation permits the results to be compared with those determined by tracer diffusivities. Using a value for the enthalpy of formation of non ionized copper vacancies in the range 12–16 kcal mol?1, the results are shown to be in agreement with the value of the activation enthalpy for self-diffusion of copper of 24 kcal mol?.  相似文献   

10.
The self-diffusion coefficient of manganese in manganous sulphide has been calculated as a function of temperature and sulphur vapour pressure. It has been shown that near the Mn/MnS phase boundary Mn self diffusion occurs by means of interstitial or interstitialcy mechanism and DMn is the following function of temperature and sulphur vapour pressure: DMn = 0.252 PS2?16exp (?269 kJ/mol/RT). At higher sulphur pressures manganese diffuses via doubly ionized cation vacancies and analogous pressure and temperature dependence can be described by the following empirical equation: DMn = 6.70 × 10?4 PS216exp(?121 kJ/mol/RT).  相似文献   

11.
Alkali atoms were scattered with hyperthermal energies from a clean and an oxygen covered (θ ≈ 0.5 ML) W(110) surface. The trapping probability of K and Na atoms on oxygen covered W(110) has been measured as a function of incoming energy (0–30 eV) and incident angle. A considerable enhancement of trapping on the oxygen covered surface compared to a clean surface was observed. At energies above 25 eV there are still K and Na atoms being trapped by the oxygen covered surface. From the temperature dependence of the mean residence time τ of the initially trapped atoms the pre-exponential factor τ0 and the desorption energy Q were derived using the relation: τ = τ0exp(QkTs). On clean W(110) we obtained for Li: τ0 = (8 ± 84) × 10?14sec, Q = (2.78 ± 0.09) eV; for Na: τ0 = (9 ± 3) × 10?14 sec, Q = (2.55 ± 0.04) eV; and for K: τ0 = (4 ± 1) × 10?13 sec, Q = (2.05 ± 0.02) eV. Oxygen covered W(110) gave for Na: τ0 = (7 ±3) × 10?15 sec, Q = (2.88 ± 0.05) eV; and for K: τ0 = (1.3 ± 0.90.6) × 10?14sec, Q = (2.48 ±0.05) eV. The adsorption on clean W(110) has the features of a supermobile two-dimentional gas; on the oxygen covered W(110) adsorbed atoms have the partition function of a one-dimen-sional gas. The binding of the adatoms to the surface has a highly ionic character in the systems of the present experiment. An estimate is given for the screening length of the non-perfect conductor W(110):ks?1≈ 0.5 Å.  相似文献   

12.
The self-diffusion of 44Ti has been measured both parallel to and perpendicular to the c axis in rutile single crystals by a serial-sectioning technique as a function of temperature (1000–1500°C) and oxygen partial pressure (10?14 ? 1 atm). The oxygen-partial-pressure dependence of. D1Ti indicates that cation selfdiffusion occurs by an interstitial-type mechanism and that both trivalent and tetravalent interstitial titanium ions may contribute to cation self-diffusion. At po2 = 1.50 × 10?7 atm where impurity-induced defects are unimportant,
D1Ti(∥c)=6.50+1.33?1.11exp?(66.11±0.56 kcalmoleRTcm2S
and
D1Ti(⊥c)= 4.55+1.78?1.28exp?(64.08±0.99)kcalmoleRTcm2S.
In the intrinsic region, the ratio D1Ti (⊥c)/D1Ti(∥c) was found to increase from 1.2 to 1.6 as the temperature decreased from 1500 to 1000°C. Computations based upon the defect model of Kofstad (involving the atomic defects Ti...iTi....iand V..o), of Marucco etal. (Ti....i and V..o), and of Blumenthal etal. (Ti...i and Ti....i) are compared with the experimental data on deviation from stoichiometry, electrical conductivity, cation self-diffusion and chemical diffusion in TiO2?x. These comparisons provide values of the defect concentrations, cation-defect diffusivities, electron mobility and reasonable values of the correlation factor for cation diffusion by the interstitialcy mechanism. Only the model of Kofstad is inconsistent with the data.  相似文献   

13.
Thermoelectric power using reversible silver electrodes and electrical conductivity on the compressed pellets of (Me4N)2Ag13I15, and (Et4N)2Ag13I15 have been measured between room temperature and below 160°C. The results of θ can be expressed by the equations:?θ = 0.115 (103/T)+0.2905VK?1 and ?θ = 0.150 (103/T) + 0.305mV K?1; and those of conductivity by the equations; σ = 28.7 exp (?0.17eV/kT) ohm?1cm?1 and σ = 216.6 exp (?0.24eVkT) ohm?1cm?1; respectively for Me- and Et-electrolytes. The results are discussed and compared with those of previous authors.  相似文献   

14.
Proton nuclear magnetic resonance relaxation times and linewidth measurements have been made on five polycrystalline organic compounds, triethylenediamine, 3-azabicyclononane, norbornane, norbornylene and norbornadiene. Measurements for each sample were made throughout the plastic crystal phase. The results are analysed in terms of molecular motion. Correlation times τ and activation enthalpies for translational self-diffusion of molecules are evaluated: triethylenediamine τ=7·6×10?19 exp (96·4/RT)s, 3-azabicyclononane τ=1·7×10?16 exp (83·6/RT)s, norbornane for 131K<T<306 K, τ=4·6×10?15 exp (54·5/RT)s for 306K<T<360K, τ=1·1×10?16 exp (64·8/RT)s, norbornylene, τ=4·×10?15 exp (48·6/RT)s and norbornadiene τ=6·8×10?15 exp (39·9/RT)s, where R is the gas constant in units of kJ K?1mol?1. The results and mechanism of diffusion are discussed in relation to the thermodynamic properties of the materials.  相似文献   

15.
The opportunity to test a new equation for the computation of the lattice energy and at the same time examine a disparity in the literature data for the enthalpy of formation of the azide ion, ΔHθ?(N3?) (g) was the motivation for this study. The results confirm our earlier calculation and show the new equation to be reliable. Thermodynamic data produced in the study take values: ΔHθ?(N3?)(g) = 144kJ mor?1ΔHθhyd(N3?) = ?315 KJ mol?1 or ΔHθhyd(N3?) = ?295 KJ mol?1UPOT(NaN3) = 732 kJ mol?1UPOT(KN3) = 659 kJ mol?1UPOT(RbN3) = 637 kJ mol?1UPOT(CsN3) = 612 kJ mol?1UPOT(TIN3) = 689 kJ mol?1. The lattice energies of azides whose enthalpies of formation are documented have been calculated as well as the enthalpy of formation of the azide radical.  相似文献   

16.
Interactions between oxygen under low pressure and a niobium-oxygen solid solution had been studied, in the regime where adsorption is the rate-determining step, from 1000 to 1700 K. It is shown that at saturation of solid solution, there exists a constant limiting value Θl of superficial coverage, comparable to a limiting bulk concentration cl. The ratios θ = Θ/Θl and ? = c/cl are called “relative ratio of occupation” (superficial and bulk). KSV is the equilibrium constant of segregation between adsorbed and dissolved oxygen atoms: (Odiss?v) + σ ? (Ochim?σ) + v (σ and v being respectively surface and bulk sites), KSV = [(1 ? θ)/θ] [?/(1 ? ?)]. The experimentally determined expression: KSV = 5.7 exp[?(22.1 ? 12.1 θ)/ RT] shows that lateral superficial interactions have a large influence on the enthalpy of transfer between the bulk and the surface of the sample. Adsorption is direct and non activated. At the solubility limit, only a fraction of the superficial sites is occupied. We estimate it to be one half. The sticking probability b of oxygen on a niobium oxygen solid solution is given by b = (1 ? θ/2)2, its value at zero coverage being estimated as unity.  相似文献   

17.
We introduce the field algebra ΣD(M;n?ng) associated with the current algebra Dr(M;g) for the Lie algebra g over physical space M. The Heisenberg magnet model is generalized to this continuum. It is shown that the Hamiltonian can be given meaning as implementing a derivation of the field algebra in certain representations.We introduce new representations of the current algebra. For example, if G = SU(2), a representation in L2(R3)?3 is [σ(?)F]j = εjkl?kψl for (?k) = ? in Dr(M;g)(ψl = F. This has cyclic subrepresentations with prime parts.  相似文献   

18.
The rotational motion of the OH? ion was studied in cubic NaOH at 575 K with quasielastic incoherent neutron scattering. The data are compared to two simple models yielding values for the radius of rotation R, the translational mean square displacement 〈u2H, the rotational jump rate τ?1 and the rotational diffusion coefficient DR. The following parameter values are obtained: (a) rotational jump model: R = 0.95 A?, 〈u2H = 0.052 A?2, τ?1 = 2 meV, (b) rotational diffusion model: R = 0.99 A?, 〈u2H = 0.046 A?2, DR = 0.72 meV.  相似文献   

19.
Electron spin resonance experiments on Cu2+ doped in a single crystal of cadmium oxalate trihydrate grown by a slow diffusion technique have been carried out at 77 K. The major features of the ESR spectra can be attributed to divalent copper (3d9) in substitutional Cd2+ sites. Information has been gained about the hyperfine and quadrupole interactions concerning the ion. The spin-Hamiltonian parameters in the S = 12, I = 32 manifold are: gx = 2.0211; gy = 2.2249; gz = 2.4536; Ax = +84.5 × 10?4cm?1; Ay = +16.8 × 10?4cm?1; Az = ?40.8 × 10 × ?4cm?1; Px = ?7.4 × 10?4cm?1; Py = ?0.4 × 10?4cm?1; and Pz = +7.8 × 10?4cm?1. An evaluation of the asymmetry and quadrupole coupling parameters revealed that the ground state of the guest ion in Cd(COO)2 · 3H2O is 0.97|x2 ?y2 > +0.24 |3z2 ? r2 >.  相似文献   

20.
The adsorption of NO and its reaction with H2 over polycrystalline Pd were investigated using flash desorption technique and ultraviolet photoelectron spectroscopy under 10?5 Pa pressure range of reactants and surface temperatures between 300 and 900 K. NO was adsorbed dissociatively onto the Pd surface above 500 K, and the heat of dissociative adsorption was ca. 126 kJ/mol. Atomic nitrogen was observed to accumulate on the Pd surface during the NO-H2 reaction, whose desorption rate exhibited second order kinetics and is expressed as follows: Vd = 10?9.8 ± 0.3exp(?67(kJ/mol)/RT) (cm2/atom·s). Hydrogenation of the adsorbed nitrogen proceeded rapidly at 485 K. It was confirmed from these results that formation of N2 and NH3 in the NO-H2 reaction proceeds through this atomically adsorbed nitrogen. Pd-N bond energy and enthalpies of some intermediate states of the NO-H2 reaction were estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号