首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electronic structure of Sr2Bi2O5 is calculated by the GGA approach. Both of the valence band maximum and the conduction band minimum are located at Γ-point. This means that Sr2Bi2O5 is a direct band-gap material. The wide energy-band dispersions near the valence band maximum and the conduction band minimum predict that holes and electrons generated by band gap excitation have a high mobility. The conduction band is composed of Bi 6p, Sr 4d and O 2p energy states. On the other hand, the valence band can be divided into two energy regions ranging from −9.5 to −7.9 eV (lower valence band) and from −4.13 to 0 eV (upper valence band). The former mainly consists of Bi 6s states hybridizing with O 2s and O 2p states, and the latter is mainly constructed from O 2p states strongly interacting with Bi 6s and Bi 6p states.  相似文献   

2.
The initial stages of oxidation of Al single crystals are studied by soft X-ray photoemission spectroscopy at photon energies hv = 30 eV and 111.13 eV using synchroton radiation. Both the valence band region and the substrate Al 2p core levels are measured with high resolution to clarify the differences between (a) the geometrical effects at different surfaces, (100) and (110), and (b) between the oxidation by pure O2 and H2O. There is a well established but not very dramatic differences in the O 2p induced band between the two crystal surfaces when oxidizing with O2. The Al 2p spectra reveal an initial state of oxidation with less O atoms per Al atom than in Al2O3ate disappears at higher exposures with O2 while it is absent when oxidizing with H2O. Only about 1/4 of the exposure with H2O is needed to obtain the same coverage as with O2.  相似文献   

3.
Electron energy loss spectra (ELS) have been obtained from polycrystalline Cr and Cr2O3 before and after surface reduction by 2 keV Ar+ bombardment. The primary electron energy used in the ELS measurements was systematically varied from 100 to 1150 eV in order to distinguish surface versus bulk loss processes. Two predominant loss features in the ELS spectra obtained from Cr metal at 9.0 and 23.0 eV are assigned to the surface and bulk plasmon excitations, respectively, and a number of other features arising from single electron transitions from both the bulk and surface Cr 3d bands to higher-lying states in the conduction band are also present. The ELS spectra obtained from Cr2O3 exhibit features that originate from both interband transitions and charge-transfer transitions between the Cr and O ions as well as the bulk plasmon at 24.4 eV. The ELS feature at 4.0 eV arises from a charge-transfer transition between the oxygen and chromium ions in the two surface layers beneath the chemisorbed oxygen layer, and the ELS feature at 9.8 eV arises from a similar transition involving the chemisorbed oxygen atoms. The intensity of the ELS peak at 9.8 eV decreases after Ar+ sputtering due to the removal of chemisorbed oxygen atoms. Sputtering also increases the number of Cr2+ states on the surface, which in turn increases the intensity of the 4.0 eV feature. Furthermore, the ELS spectra obtained from the sputtered Cr2O3 surface exhibit features characteristic of both Cr0 and Cr2O3, indicating that Ar+ sputtering reduces Cr2O3. The fact that neither the surface- nor the bulk-plasmon features of Cr0 can be observed in the ELS spectra obtained from sputtered Cr2O3 while the loss features due to Cr0 interband transitions are clearly present indicates that Cr0 atoms form small clusters lacking a bulk metallic nature during Ar+ bombardment of Cr2O3.  相似文献   

4.
A theoretical study on Sb-doped SnO2 has been carried out by means of periodic density functional theory (DFT) at generalized gradient approximation (GGA) level. Stability and conductivity analyses were performed based on the formation energy and electronic structures. The results show that Sn0.5Sb0.5O2 solid solution is stable because the formation energy of Sn0.5Sb0.5O2 is −0.06 eV. The calculated energy band structure and density of states showed that the band gap of SnO2 narrowed due to the presence of the Sb impurity energy levels in the bottom of the conduction band, namely there is Sb 5s distribution of electronic states from the Fermi level to the bottom of conduction band after the doping of antimony. The studies provide a theoretical basis to the development and application of Sn1−xSbxO2 solid solution electrode.  相似文献   

5.
X-ray O Kα, Rh Mγ and a series of M Lα emission spectra, ESCA spectra of the valence and inner levels, and O K and Rh MIII quantum-yield spectra for X-ray photoemission of the rhodium double oxides MRhO2 (M = Li, Na, K), MRh2 O4 (M = Be, Mg, Ca, Sr, Ba, Co, Ni, Cu, Zn, Cd, Pb), RhMO4 (M = V, Nb, Ta) and Rh2MO6 (M = Mo, W) have been measured and the dependence of electronic structure on the metal M analysed. For all compounds the inner part of the valence band corresponds to O 2pσ + O 2pπ + Rh 4d states, while the outer part corresponds to Rh 4d. The valence band is separated from the conduction band by a narrow gap of width less than 1 eV. The first empty band, near the bottom of the conduction band, is formed by Rh 4d states, followed by a band due to vacant O 2p states.  相似文献   

6.
X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), magnetization and magnetic susceptibility of Mn1−xAlxNi alloys are reported. A change in the crystallographic structure takes place around x=0.4 from CuAuI to CsCl (B2) structure type. For x0.5 a mixed B2+L21 state exists which incorporates antiferromagnetic (B2) and ferromagnetic (L21) parts. A direct evidence for the existence of local moments on Mn sites in Mn1-xAlxNi alloys is given by the exchange splitting of XPS Mn 3s and Mn 2p3/2 core levels. The gradual filling of the Ni 3d band as the Al concentration increases can be explained by the hybridization of the Ni 3d band and Al 3sp states.  相似文献   

7.
The total density of occupied states in the valence band of CoO and Co3O4 is determined by XPS and UPS. From variations of excitation probability of the bands, the 4 e V wide O2p band is shown to be located around 5 eV for both oxides, while structures obtained from photoionisation of the localized 3d band spread over 10 eV range below the Fermi level overlapping with O2p band. The 3d peaks located at binding energy <3 eV correspond to the calculated energy of the dn ?1 manifold final state in the octahedral and tetrahedral crystal field of CoO and Co3O4. The 3d levels at higher binding energy are shown to occur from configuration interaction in both final and initial states. These last peaks are higher in intensity for CoO relative to Co3O4. A superior limit for the width of the 3d initial band in a one electron energy diagram is given to be <3 eV. This value associated to the Coulomb correlation energy measured equal to ~3 eV. This value associated to the Coulomb correlation energy measured equal to ~3 eV from shake-up and Auger energy confirms the Mott insulator nature of CoO.  相似文献   

8.
于峰  王培吉  张昌文 《物理学报》2011,60(2):23101-023101
采用基于第一性原理的线性缀加平面波方法(FP-LAPW),研究Al掺杂SnO2材料Sn1-xAlxO2 (x= 0,0.0625,0.125,0.1875,0.25)的电子结 构和光学性质,包括能带结构、电子态密度、介电函数和其他一些光学性质.计算结果表明,掺杂Al之后价带上部分折叠态增加,价带宽度发生收缩,对导带底起作用的Sn 5s态减少,使得带隙增宽,且态密度整体向高能方向发生移动.随着Al掺杂量的增加带隙越来越宽,Al杂质能级在导带部分与Sn 5p态电子相互作用逐渐增强,虚部谱中的第一介电峰的强度随掺杂Al浓度增大而减弱.同时,吸收谱及其他光学谱线与介电函数虚部谱线相对应,各谱线均发生蓝移现象,对应带隙增宽,从理论上指出了光学性质与电子结构之间的内在关系. 关键词: 能带结构 态密度 光学性质 介电函数  相似文献   

9.
The structural, electronic and optical properties of the ternary carbides Hf2Al3C4 and Hf3Al3C5 are studied via first principles orthogonalized linear combination of atomic orbitals (OLCAO) method. Results on crystal structure, interatomic bonding, band structure, total and partial density of states (DOS), localization index (LI), effective charge (Q*), bond order (BO), dielectric function (ε), optical conductivity (σ) and electron energy loss function are presented and discussed in detail. The band structure plots show the conducting nature of Hf2Al3C4 and Hf3Al3C5 carbides. DOS results disclose that the total number of states at Fermi level N(EF) are 1.89 and 2.38 states/(eV unit cell) for Hf2Al3C4 and Hf3Al3C5 respectively. The Q* calculations show an average charge transfer of 0.723 and 0.711 electrons from Hf and 0.809 and 0.807 electrons from Al to C sites in Hf2Al3C4 and Hf3Al3C5 respectively. The BO results provide the dominating role of Al–C bonds with BO value of 6.62 (BO%?=?59%) and 6.66 (BO%?=?49%) for Hf2Al3C4 and Hf3Al3C5 respectively and are considered responsible for the crystals cohesion. The LI results reflect the presence of highly delocalized states in the vicinity of the Fermi level. The dielectric function plots of the real (?1(?ω)) and imaginary (?2(?ω)) parts show the anisotropic behavior of Hf2Al3C4 and Hf3Al3C5. The results on optical conductivity (σ) support the trends observed in dielectric functions. The electron energy loss functions reveal the presence of sharp peaks both in ab-plane and along c-axis around 20?eV in Hf2Al3C4 and Hf3Al3C5 ternary carbides.  相似文献   

10.
SCF-Xα SW MO calculations on metal core ion hole states and X-ray emission (XES) and X-ray photoelectron (XPS) transition states of the non- transition metal oxidic clusters MgO610?, AlO45? and SiO44? show relative valence orbital energies to be virtually unaffected by the creation of valence orbital or metal core orbital holes. Accordingly, valence orbital energies derived from XPS and XES are directly comparable and may be correlated to generate empirical MO diagrams. In addition, charge relaxation about the metal core hole is small and valence orbital compositions are little changed in the core hole state. On the other hand, for the transition metal oxidic clusters FeO610?, CrO69? and TiO68? relative valence orbital energies are sharply changed by a metal core orbital or crystal field orbital hole, the energy lowering of an orbital increasing with its degree of metal character. Consequently O 2p nonbonding → M 3d-O 2p antibonding (crystal field) energies are reduced, while M 3d bonding → O 2p nonbonding and M 3d-O 2p antibonding → M 4s,p-O 2p antibonding (conduction band) energies increase. Charge relaxation about the core hole is virtually complete in the transition metal oxides and substantial changes are observed in the composition of those valence orbitals with appreciable M 3d character. This change in composition is greater for e g than for t2g orbitals and increases as the separation of the eg crystal field (CF) orbitals and the O 2p nonbonding orbital set decreases. Based on the hole state MO diagrams the higher energy XPS satellite in TiO2 (at about 13 eV) is assigned to a valence → conduction band transition. The UV PES satellites at 8.2 eV in Cr2O3 and 9.3 eV in FeO are tentatively assigned to similar transitions to conduction band orbitals, although the closeness in energy of the crystal field and O 2p nonbonding orbitals in the valence orbital hole state prevents a definite assignment on energy criteria alone. However the calculations do clearly show that charge transfer transitions of the eg bonding → eg crystal field orbital type would generally occur at lower energy than is consistent with observed satellite structure.A core electron hole has little effect upon relative orbital energies and is only slightly neutralized by valence electron redistribution for MgO and SiO2. For the transition metal oxides a core hole lowers the relative energies of M3d containing orbitals by large amounts, reducing O → M charge transfer and increasing M 3d crystal field → conduction band energies. Large and sometimes overcomplete neutralization of the core hole is observed, increasing from CrO69? to FeO610? to TiO68?. as the O → M charge transfer energy declines.High energy XPS satellites in TiO2 may be assigned to O 2p nonbonding → conduction band transitions while lower energy UV PES satellites in FeO and Cr2O3 arise from crystal field or O 2p nonbonding → conduction band excitations. Our “shake-up” assignment for FeO610?, CrO69? and TiO68? are less than definitive because no procedure has yet been developed to calculate “shake-up” intensities resulting from transitions of the type described. However the results do allow a critical evaluation of earlier qualitative predictions of core and valence hole effects. First, we find that the comparison of hole or valence state ionic systems with equilibrium distance systems of higher nuclear and/or cation charge (e.g. the comparison of the FeO610? Fe 2p core hole state to Co3O4) is dangerous. For example, larger MO distances in the ion states substantially reduce crystal field splittings. Second, core and CF orbital holes sharply reduce O → M charge transfer energies, giving 2eg → 3eg energy separations which are generally too small to match observed satellite energies. Third, highest occupied CF-conduction band energies are only about 4–5 eV in the ground states, but increase to about 7–11 eV in the core and valence hole states of the transition metal oxides studied. The energetic arguments presented thus support the idea of CF and/or O 2p nonbonding → conduction band excitations as assignments for “shake-up” satellites, at least in oxides of metals near the beginning of the transition series.  相似文献   

11.
We have measured the electron energy loss spectra of Ca2V2O7 in the reflexion mode, at incident energies between 200 and 2400 eV, and the X-ray photoelectron spectra excited by Al K α radiation. The abundant loss structures observed can be correlated with the possible interband transitions, collective oscillations, and excitation of O2s and V3p electrons within the V2O74- ion. The gap width and molecular orbital (MO) spread (or splitting) is about l eV larger in the V2O74- ion than in its component VO43- ion. Excitation of O2s states, which may occur together with some MO over-gap transitions, displaces the collective oscillations about 7 eV towards lower energies. Deeper V3p electrons are excited with a maximum energy loss some 7 eV above their binding energy. Cross transitions from Ca3p levels into some empty states of the V2O74- ion, or direct transitions to available states of the Ca2+ ion could not be unambiguously identified. The energy dependence of the excitation cross section and of the electron penetration depth results in a significant variation of the relative intensity of various losses over the investigated energy range.  相似文献   

12.
Photoemission spectra of Sn-doped In2O3(111) have been measured using a range of photon energies between 40 and 1300 eV. The intensity of structure at the bottom of the valence band associated with states of mixed Sn 5s/O 2p character increases with increasing photon energy relative to that of states of more dominantly O 2p character at the top of the valence band, as expected from one electron ionisation cross sections. In addition a pronounced resonance in the intensity of a weak conduction band feature is observed around the In 4p core threshold.  相似文献   

13.
The band structure of SnS2 has been investigated over a wide energy range by pseudopotential band structure calculations and synchrotron radiation photoemission spectroscopy techniques. A good correspondence has been found between energy positions of the theoretical density of states features and structure in the constant initial state (CIS) and energy distribution curves (EDC's) for the conduction and the valence bands respectively. In the energy region between — 8 eV and 15 eV from the top of the valence band we observe four valence band and six conduction band peaks.  相似文献   

14.
《Surface science》1987,180(1):263-278
TiO2(110) surfaces with controlled oxygen deficiency introduced by 160 eV electron bombardment have been studied by XPS and EELS. Stoichiometry was monitored by the growth of core peaks due to Ti3+ states in XPS. Oxygen desorption is characterised by an initial cross section of 3 × 10−21 cm2 that decreases with increasing oxygen loss, tending toward a limiting composition Ti4O7. The oxygen deficient surfaces display sub-bandgap excitations in electronic EELS, whilst in the vibrational region there is a selective downward shift and attenuation of the highest energy phonon loss. This is attributed to modification of the effective background dielectric constant by the defect excitations. Quantitative consideration of the changes in HREELS leads to an estimate of 0.1 for the oscillator strength of the defect electronic excitations. The high value supports the idea that electrons at oxygen deficient TiO2 surfaces occupy states that are pulled down below the conduction band by polaronic self trapping.  相似文献   

15.
承焕生  要小未  杨福家 《物理学报》1993,42(7):1110-1115
本文介绍了用MeV离子散射和沟道效应研究单晶铝表面无定型氧化层与基体之间界面原子结构的方法。报道了Al2O3/Al(100)界面原子结构的实验结果。实验表明,在纯氧气氛围中400℃下生成的氧化铝膜,铝和氧原子浓度比例严格为2与3之比;Al2O3膜和Al(100)基体之间的界面极其陡峭,氧化铝膜下Al(100)基体表面的再构层不大于一个原子层。由实验测量与用Monte Carlo方法计算结果比较,得到再构层原子离开原来晶 关键词:  相似文献   

16.
We have studied refractive index dispersion in thin ZnGa2O4 films obtained by high-frequency RF ion plasma sputtering. We have established that the spectral dependence of the refractive index in the visible region of the spectrum is mainly determined by transitions from the band including 2p states of the oxygen and 3d states of the zinc, forming the highest occupied level of the valance band, to the bottom of the conduction band formed by the 4s4p states of the zinc. For the studied films, we have determined the parameters of the single-oscillator approximation, the dispersion energy, the chemical bond ionicity, and the coordination number.  相似文献   

17.
The electronic structures of the distrontium magnesium disilicate (Sr2MgSi2O7(:Eu2+)) materials were studied by a combined experimental and theoretical approach. The UV-VUV synchrotron radiation was applied in the experimental study while the electronic structures were investigated theoretically by using the density functional theory. The structure of the valence and conduction bands and the band gap energy of the material as well as the position of the Eu2+ 4f ground state were calculated. The calculated band gap energy (6.7 eV) agrees well with the experimental value of 7.1 eV. The valence band consists mainly of the oxygen states and the bottom of the conduction band of the Sr states. The calculated occupied 4f ground state of Eu2+ lies in the energy gap of the host though the position depends strongly on the Coulomb repulsion strength. The position of the 4f ground state with respect to the valence and conduction bands is discussed using the theoretical and experimental evidence available.  相似文献   

18.
Al-Al2O3 composite coatings with different Al2O3 particle shapes were prepared on Si and Al substrate by cold spray. The powder compositions of metal (Al) and ceramic (Al2O3) having different sizes and agglomerations were varied into ratios of 10:1 wt% and 1:1 wt%. Al2O3 particles were successfully incorporated into the soft metal matrix of Al. It was found that crater formation between the coatings and substrate, which is typical characteristic signature of cold spray could be affected by initial starting Al2O3 particles. In addition, when the large hard particles of fused Al2O3 were employed, the deep and big craters were generated at the interface between coatings and hard substrates. In the case of pure soft metal coating such as Al on hard substrate, it is very hard to get proper adhesion due to lack of crater formation. Therefore, the composite coating would have certain advantages.  相似文献   

19.
Mg,Al掺杂对LiCoO2体系电子结构影响的第一原理研究   总被引:3,自引:1,他引:2       下载免费PDF全文
为了研究Mg, Al掺杂对锂二次电池正极材料LiCoO2体系的电子结构的影响,进而揭示Mg掺杂的LiCoO2具有高电导率的机理,对Li(Co, Al)O2和Li(Co, Mg)O2进行了基于密度泛函理论的第一原理研究. 通过对能带及态密度的分析,发现在Mg掺杂后价带出现电子态空穴,提高了电导,并且通过歧化效应(disproportionation)改变了Co-3d电子在各能级的分布,而Al掺杂则没有这些作用. O关键词: 2')" href="#">LiCoO2 电子结构 第一原理 电导  相似文献   

20.
Photoluminescence (PL) of Al2O3 films obtained by anodization of thermally evaporated and annealed thin Al films on p++Si in 0.3 M oxalic acid has been investigated. Thermal annealing at 200–950 °C under the dry nitrogen atmosphere was used for deactivation of luminescence centres. Luminescence from as grown films was broad and located at 425 nm. This luminescence reached to highest level after annealing at 600 °C. Maximum 10 min was required for full optical activation and prolonged annealing up to 4 h did not change the luminescence intensity. Because of deep levels, absorption band edge of as grown films was shifted to the lower energy which is 3.25 eV. Annealing above 800 °C reduced the PL intensity and this observation was correlated with the blue shift of band edge as the defects annealed out. Disappearing PL intensity and blue shift of band edge absorption after annealing at 950 °C was mainly attributed to the oxygen-related defects and partly to impurities that may be originated from oxalic acid. AFM results did not show any hexagonally ordered holes but uniformly distributed nanosized Al2O3 clusters that were clearly seen. XRD measurements on as grown Al2O3 showed only [1 1 0] direction of α phase. Debye–Scherer calculation for this line indicates that cluster size is 35.7 nm. XRD and AFM pictures suggest that nanocrystalline Al2O3 are embedded in amorphous Al2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号