首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An electrochemical DNA biosensor based on the recognition of single stranded DNA (ssDNA) by hybridization detection with immobilized complementary DNA oligonucleotides is presented. DNA and oligonucleotides were covalently attached through free amines on the DNA bases using N-hydroxysulfosuccinimide (NHS) and N-(3-dimethylamino)propyl-N′-ethylcarbodiimide hydrochloride (EDC) onto a carboxylate terminated alkanethiol self-assembled monolayers (SAM) preformed on a gold electrode (AuE). Differential pulse voltammetry (DPV) was used to investigate the surface coverage and molecular orientation of the immobilized DNA molecules. The covalently immobilized probe could selectively hybridize with the target DNA to form a hybrid on the surface despite the bases being attached to the SAM. The changes in the peak currents of methylene blue (MB), an electroactive label, were observed upon hybridization of probe with the target. Peak currents were found to increase in the following order: hybrid-modified AuE, mismatched hybrid-modified AuE, and the probe-modified AuE which indicates the MB signal is determined by the extent of exposed bases. Control experiments were performed using a non-complementary DNA sequence. The effect of the DNA target concentration on the hybridization signal was also studied. The interaction of MB with inosine substituted probes was investigated. Performance characteristics of the sensor are described.  相似文献   

2.
A novel assay for the voltammetric detection of 18-bases DNA sequences relating to Chronic Myelogenous Leukemia (CML, Type b3a2) using methylene blue (MB) as the hybridization indicator was reported. DNA was covalently attached onto a glassy carbon electrode (GCE) through amines of the DNA bases using N-hydroxysulfosuccinimide (NHS) and N-(3-dimethylamion)propyl-N′-ethyl carbodiimidehydrochloride (EDC). The covalently immobilized single-stranded DNA (ssDNA) could selectively hybridize with its complementary DNA (cDNA) in solution to form double-stranded DNA (dsDNA) on the surface. A significant increase of the peak current for methylene blue upon the hybridization of immobilized ssDNA with cDNA in the solution was observed. This peak current change was used to monitor the recognition of CML DNA sequence. This electrochemical approach is sequence specific as indicated by the control experiments in which no peak current change was observed if a non-complementary DNA sequence was used. Factors, such as DNA target concentration and hybridization conditions determining the sensitivity of the electrochemical assay were investigated. Under optimal conditions, this sensor has a good calibration range between 1.25 × 10−7 and 6.75 × 10−7 M, with CML DNA sequence detection limit of 5.9 × 10−8 M.  相似文献   

3.
The unique binding event between Escherichia coli single-stranded DNA binding protein (SSB) and single-stranded oligonucleotides conjugated to gold (Au) nanoparticles is utilized for the electrochemical detection of DNA hybridization. SSB was attached onto a self-assembled monolayer (SAM) of single-stranded oligonucleotide modified Au nanoparticle, and the resulting Au-tagged SSB was used as the hybridization label. Changes in the Au oxidation signal was monitored upon binding of Au tagged SSB to probe and hybrid on the electrode surface. The amplified oxidation signal of Au nanoparticles provided a detection limit of 2.17 pM target DNA, which can be applied to genetic diagnosis applications. This work presented here has important implications with regard to combining a biological binding event between a protein and DNA with a solid transducer and metal nanoparticles.  相似文献   

4.
An electrochemical hybridization biosensor based on peptide nucleic acid (PNA) probes is presented. PNA probes were attached covalently through a competition of free amines on the guanine bases and also at the 5 end of the probe, using N-(3-dimethylamino)propyl)-N-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) onto a carboxylate terminated alkanethiol self-assembled monolayer (SAM) preformed on a gold electrode (AuE). The covalently immobilized probe could selectively hybridize with the target DNA to form a hybrid on the surface despite the bases being attached to the SAM. The changes in the peak currents of methylene blue (3,7-bis(dimethylamino)phenothiazin-5-ium chloride, MB), an electroactive label, were observed upon hybridization of probe with the target. Effective discrimination against point mutation was also obtained. Performance characteristics of the sensor are described, along with future prospects.  相似文献   

5.
Nanohybrids were formed from 3-mercaptopropionic acid(MPA)-coated Mn-doped ZnS quantum dots(QDs) and methylene blue(MB) via electrostatic interaction, and then used in the detection of trace DNA.The principle of detection is as follows: MB binds with Mn-doped ZnS QDs via electrostatic interaction,and then quenches the room temperature phosphorescence(RTP) of the QDs through photoinduced electron-transfer(PIET). After the addition of DNA, MB binds with DNA through intercalation and electrostatic interaction, and desorbs from the surfaces of Mn-doped ZnS QDs, which recovers the RTP of the QDs. On this basis, a DNA detection method based on the properties of RTP was set up. This method shows a detection range of 0.2–20 mg/L, and a detection limit of 0.113 mg/L. Since this method is based on the RTP of QDs, it is not interfered by the background fluorescence or scattering light in vivo, and thus,avoids complex sample pretreatment. Thus, this method is very feasible for detection of trace DNA in biofluids.  相似文献   

6.
Cyclic voltammetric investigation of the interaction of methylene blue (MB) with heparin (hep) at a gold electrode is presented. The combination of MB with heparin formed a nonelectroactive complex MB-hep, which resulted in the peak current decrease of MB. The anodic peak current difference of MB was found to be proportional to the concentration of heparin in the range of 0.666-64.5 μg mL−1 with a detection limit of 270 ng mL−1 and a satisfactory result was obtained for the determination of heparin in injection samples. The equilibrium constant for MB-hep complex was calculated to be 7.32 × 105. The dynamic process of competition of Ba2+ with methylene blue for binding heparin was monitored using quartz crystal microbalance (QCM) technique. The reaction rate constant between Ba2+ and MB-hep was estimated to be 0.0022 s−1.  相似文献   

7.
Hu Z  Tong C 《Analytica chimica acta》2007,587(2):187-193
The fluorescence intensity of methylene blue (MB) quenched by DNA in the pH range of 6.5-8.0 was studied with synchronous fluorescence technology. A novel method for detecting single-stranded and double-stranded DNA was developed. The decreased fluorescence intensity at 664 nm is in proportion to the concentration of DNA in the range of 0.28-11.0 μmol L−1 for ctDNA, 0.14-8.25 μmol L−1 for thermally denatured ctDNA and 0.28-8.25 μmol L−1 for hsDNA. The detection limits (S/N = 3) are 0.11, 0.04 and 0.04 μmol L−1, respectively. The method is rapid, selective, and the reagents are lower toxic. It has been used for the determination of DNA in synthetic samples with good satisfaction. In addition, the interaction modes between MB and ctDNA and the mechanism of the fluorescence quenching were also discussed in detail. The experimental results from absorption spectra and fluorescence polarization indicate that the possible interaction modes between MB and DNA are the electrostatic binding and the intercalation binding.  相似文献   

8.
Titanate nanotubes (TNT) were proven to be efficient support for the immobilization of methylene blue (MB). UV–vis absorption and Fourier transform infrared spectra showed that the effect of MB absorbed on TNT was better than nanocrystalline anatase TiO2 (TNP). The quantity of MB absorbed onto TNT was found to be greater than that of TNP and the electrode modified with the MB–TNT film was more stable due to the strong interaction between TNT and MB as well. The absorption of MB on TNT was impacted by the pH value of the reaction solution for the change of surface charge. Electrochemical oxidation of dopamine (DA) at different electrodes was studied. The result showed that the MB–TNT composite film exhibited excellent catalytic activities to DA compared to those of pure TNT, which is a result of the great promotion of the electron-transfer rate between DA and the electrode surface by the MB–TNT film. Furthermore, the layer-by-layer self-assembly behavior of the electrochemically functional MB–TNT nanocomposite was also discussed after obtaining the stable colloid suspension of MB–TNT. The excellent electrochemical ability and the easy fabrication of layered nanocomposite make the MB–TNT nanocomposite very promising in electrochemistry study and new nanotube-based devices.  相似文献   

9.
A novel electrochemical method for the determination of sulphide at a multi-walled carbon nanotube-dihexadecyl hydrogen phosphate composite film coated glassy carbon electrode (MWNTs-DHP/GCE) based on in situ synthesis of methylene blue (MB) was established. 2007 Sheng Shui Hu. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.  相似文献   

10.
In this paper, we investigate the structures and insulating characters of the tetragonal zirconia (t-ZrO2) thin films with various possible terminations within the lower-index Miller planes (001) and (100). It is found that, firstly, a shift towards higher energy region makes the valence band of the OO-terminated thin films of the (001) Miller plane of t-ZrO2 cross the Fermi level EF and thus are unusable as a gate dielectric oxide in integrated-circuit (IC) industry because of large-leakage current. Secondly, a new splitting state presented just below the bottom of conduction band, and the Fermi level EF drops between them, which imply that the Zr-terminated thin films of the (001) Miller plane of t-ZrO2 are also unusable as a gate dielectric oxide in IC industry because of large leakage current. Thirdly, the insulating character disappears completely for Zr + OO-terminated thin films of the (001) Miller plane of t-ZrO2 and thus is also unusable as a gate dielectric oxide in IC industry because of metal character. Fourthly, the insulating character is maintained for the ZrO2-terminated thin films of the (100) Miller plane and thus is usable as a gate dielectric oxide in IC industry.  相似文献   

11.
Honglan Qi 《Talanta》2007,72(3):1030-1035
A sensitive electrochemical detection of DNA hybridization using a paste electrode assembled by multi-wall carbon nanotubes (MWNT) and immobilizing DNA probe within electropolymerized polypyrrole (ppy) was developed. The detection approach relied on entrapping of DNA probe within electropolymerized ppy film on the MWNT paste electrode and monitoring the current change generated from an electroactive intercalator of ethidium bromide (EB) after DNA hybridization. As a consequence of DNA hybridization, significant changes in the current of EB intercalated with double-stranded DNA (ds-DNA) on the MWNT paste electrode were observed. Based on the response of EB, only the complementary DNA sequence gave an obvious current signal compared with the five-point mismatched and non-complementary sequences. The oxidation peak current was linearly related to the logarithm of the concentration of the complementary DNA sequence from 1.0 × 10−10 to 1.0 × 10−8 M with a detection limit of 8.5 × 10−11 M. This work demonstrates that the incorporation of MWNT paste electrode with electropolymerization is a promising strategy of functional interfaces for the immobilization of biological recognition elements.  相似文献   

12.
A new electrochemical sequence‐specific DNA detection platform based on primer generation‐rolling circle amplification (PG‐RCA), methylene blue (MB) redox indicator, and indium tin oxide (ITO) electrode is reported. In the presence of a specific target sequence, PG‐RCA, an isothermal DNA amplification technique, produced large amounts of amplicons in an exponential manner. In addition to the standard components, the reaction mixture contained MB, which bound with the PG‐RCA amplicons. End‐point electrochemical measurement by differential pulse voltammetry (DPV) was performed using ITO electrode. The amplicon‐bound MB resulted in a lower DPV signal than free MB due to a smaller diffusion coefficient as well as electrostatic repulsion between the negatively charged amplicon‐bound MB and ITO electrode. With simple assay design (recognition probe) and instrumentation (operating temperature at 37 °C and ITO electrode without the need for probe immobilization), this detection platform is well suited for point‐of‐care and on‐site testing. Real‐time measurement was also achieved by pretreating the ITO electrode with bovine serum albumin.  相似文献   

13.
《Electroanalysis》2002,14(24):1685-1690
A chitosan modified carbon paste electrode (ChiCPE) based DNA biosensor for the recognition of calf thymus double stranded DNA (dsDNA), single stranded DNA (ssDNA) and hybridization detection between complementary DNA oligonucleotides is presented. DNA and oligonucleotides were electrostatically attached by using chitosan onto CPE. The amino groups of chitosan formed a strong complex with the phosphate backbone of DNA. The immobilized probe could selectively hybridize with the target DNA to form hybrid on the CPE surface. The detection of hybridization was observed by using the label‐free and label based protocols. The oxidation signals of guanine and adenine greatly decreased when a hybrid was formed on the ChiCPE surface. The changes in the peak currents of methylene blue (MB), an electroactive label, were observed upon hybridization of probe with target. The signals of MB were investigated at dsDNA modified ChiCPE and ssDNA modified ChiCPE and the increased peak currents were observed, in respect to the order of electrodes. The hybridization of peptide nucleic acid (PNA) probes with the DNA target sequences at ChiCPE was also investigated. Performance characteristics of the sensor were described, along with future prospects.  相似文献   

14.
制备了基于氧化锆(ZrO_2)/聚亚甲基蓝(PMB)修饰电极的无标记DNA传感器,用于转基因植物CaMV35S启动子基因的检测。探针DNA(ssDNA)通过ZrO_2和DNA的磷酸基的相互作用修饰到电极表面,以PMB氧化峰的示差脉冲伏安响应为检测信号,传感器和完全互补的DNA片段杂交后,PMB的氧化峰电流明显降低,当和完全不匹配的DNA片段杂交时,峰电流无明显变化。对于完全互补的DNA片段,在2.0×10~(-12)~2.0×10~(-8) mol/L浓度范围内峰电流的变化值和浓度的对数成良好的线性关系,检测限为4.1×10~(-13) mol/L(S/N=3)。所制备的传感器具有良好的稳定性、再生性和重现性,用于样品检测,结果令人满意。  相似文献   

15.
A simple and sensitive label-free colorimetric detection of telomere DNA has been developed. It was based on the color change of gold nanoparticles (AuNPs) due to DNA hybridization. UV–vis spectra and transmission electron microscopy (TEM) were used to investigate the change of AuNPs. Under the optimized conditions, the linear range for determination of telomere DNA was 5.7 × 10−13 to 4.5 × 10−6 mol/L. The detection limit (3σ) of this method has decreased to pico-molar level.  相似文献   

16.
A chemiluminescent (CL) detection method has been developed for DNA hybridization. The assay relies on a sandwich-type DNA hybridization in which gold nanoparticles modified with alkylthiol-capped oligonucleotide strands are used as probes to monitor the presence of the specific target DNA. The , which is the dissolving product of the gold nanoparticles anchored on the DNA hybrids, serves as an analyte in the H2O2–luminol– CL reaction for the indirect measurement of the target DNA. The combination of the remarkable sensitivity of the CL analysis with the large number of released from each DNA hybrid allows a detection limit at levels as low as 0.1 pM of the target DNA. Moreover, with a further silver amplification step, the detection limit will be pushed down to the femtomolar domain.   相似文献   

17.
以乙二胺为手臂分子制备的DNA修饰电极及其伏安性能   总被引:5,自引:0,他引:5  
Carboxyl was formed on the surface of glassy carbon electrode(GCE) by electrochemical oxidation. Ethylenediamine(En) was used as the arm molecule to link carboxyl with dsDNA using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC) and N- hydroxysuccinimide (NHS) as the activators to prepare dsDNA modified electrode(dsDNA/En/GCE). It was shown that dsDNA couM be covalently immobilized on the surface of GCE. ssDNA modified electrode(ssDNA/En/GCE) was obtained via the thermal denaturation of dsDNA/En/GCE. The dsDNA/En/GCE and ssDNA/En/GCE were characterized by voltammetry with methylene blue(MB) as the indicator. The results indicated that the currents of the redox peaks of MB at ssDNA/En/GCE were larger than those at dsDNA/En/GCE, and the currents of the redox peaks at En/GCE were the smallest. The peak-currents of MB at the DNA modified electrode had good reproducibility after multi-denaturation and hybridization cycles.  相似文献   

18.
An electrochemical biosensor capable of indirect detection of DNA damage induced by any one of the three endocrine-disrupting compounds (EDCs) – bisphenol A (BPA), 4-nonylphenol (NP) and 4-t-octylphenol (OP), has been researched and developed. The methylene blue (MB) dye was used as the redox indicator. The glassy carbon electrode (GCE) was modified by the assembled dsDNA/graphene oxide-chitosan/gold nano-particles to produce a dsDNA/GO-CS/AuNPs/GCE sensor. It was characterized with the use of electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and scanning electron microscopy (SEM) techniques. The loading/release of the MB dye by the dsDNA/GO-CS/AuNPs film was investigated, and the results showed that the process was reversible. Based on this, the sensor was used to measure the difference between the loading capabilities of intact and damaged dsDNA in the films. The sensor was then successfully applied to detect DNA damage electrochemically. The differential pulse voltammetry (DPV) peak current ratio for MB, observed before and after DNA damage, increased linearly in the presence the BPA, NP or OP compounds; the treatment range was 10–60 min, and the respective damage rates were 0.0069, 0.0044 and 0.0031 min−1, respectively. These results were confirmed by the binding constants: 2.09 × 106 M−1 (BPA-DNA), 1.28 × 106 M−1 (NP-DNA) and 9.33 × 105 M−1 (OP-DNA), all of which were obtained with the use of differential pulse stripping voltammetry (DPSV).  相似文献   

19.
An effective procedure for constructing a DNA biosensor is developed based on covalent immobilization of NH_2 labeled,single strand DNA(NH_2-ssDNA) onto a self-assembled diazo-thiourea and gold nanoparticles modified Au electrode(diazo-thiourea/GNM/Au).Gold nano-particles expand the electrode surface area and increase the amount of immobilized thiourea and single stranded DNA(ssDNA) onto the electrode surface.Diazo-thiourea film provides a surface with high conductibility for electron transfer and a bed for the covalent coupling of NH_2-ssDNA onto the electrode surface.The immobilization and hybridization of the probe DNA on the modified electrode is studied by differential pulse voltammetry(DPV) using methylene blue(MB) as a well-known electrochemical hybridization indicator.The linear range for the determination of complementary target ssDNA is from 9.5(±0.1) × 10~(-13) mol/L to1.2(±0.2) x 10~(-9) mol/L with a detection limit of 1.2(±0.1) 10~(-13) mol/L.  相似文献   

20.
Methylene blue (MB) was incorporated into mordenite zeolite by ion exchange reaction in aqueous phase. The dye is strongly retained and not easily leached from the zeolite matrix. The solid was characterized by XRD prior to using it for the electrode preparation. This compound was incorporated into a carbon paste electrode for cyclic voltammetric and amperometric measurements. Methylene blue immobilized on the support underwent a quasi-reversible electrochemical redox reaction. In various electrolyte solutions and changing the pH between 2.0 and 7.0, the midpoint potential remained practically constant, i.e. 153.7±0.8 mV. This is not the usual behavior of MB, because in solution phase its midpoint potential changes considerably as the pH changes. The electrode made with this material was used for the mediated oxidation of ascorbic acid. The anodic peak current observed in cyclic voltammetry was linearly dependent on the ascorbic acid concentration. At a fixed potential under static conditions, the calibration plot was linear over the ascorbic acid concentration range 2.0×10−5 to 8.0×10−4 M. The detection limit of the method is 1.21×10−5 M, low enough for trace ascorbic acid determination in various real samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号