首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用密度泛函理论UBP86方法计算了Cr3(dpa)4Cl2 (1)、Cr3(dpa)4(BF4)2 (2)、Cr3(dpa)4Cl(BF4) (3)、Cr3(dpa)4(CCPh)2 (4)和Cr3(dpa)4Cl(CCPh) (5)金属串配合物的结构, 并对配合物的构型、Cr—Cr键的本质以及轴向配体对Cr—Cr键的影响进行了研究. 结果表明: (1) Cr—Cr平均键长较长的配合物趋于形成对称构型, 较短时趋于形成非对称构型. 最稳定的五重态的Cr—Cr平均键长最长, 故优化时趋于形成对称构型; 七重态的Cr—Cr平均键长最短, 趋于形成非对称构型; (2) 五重态的Cr36+金属链均存在三中心三电子σ键, 含弱σ给电子轴向配体BF4-的2和3的Cr—Cr短键还具有弱的π相互作用. 七重态下, 对称构型的4中仅有三中心三电子σ键, 而非对称构型的1-3、5的Cr—Cr短键为三重键, 非对称构型仍具有Cr36+链的σ离域作用, 仍具有分子导线的潜在应用; (3) 轴向配体L与Cr的作用主要表现为nL→4sCr或nL→3dz2Cr离域, 较强的σ给电子配体CCPh-还存在σC—C→4sCr离域. Cr与L的结合强度为2<3<1<5<4, CCPh-与Cr的结合最强, 使Cr—Cr键减弱、Cr—Cr距离增长, 故4的各自旋重态均为对称构型.  相似文献   

2.
Tetranuclear [Co-Gd](2) complexes were prepared by using trianionic ligands possessing amide, imine, and phenol functions. The structural determinations show that the starting cobalt complexes present square planar or square pyramid environments that are preserved in the final tetranuclear [Co-Gd](2) complexes. These geometrical modifications of the cobalt coordination spheres induce changes in the cobalt spin ground states, going from S = 1/2 in the square planar to S = 3/2 for the square pyramid environments. Depending on the ligand, the complexes display antiferromagnetic or ferromagnetic Co(II)-Gd(III) interactions. The temperature dependence of the magnetic susceptibility-temperature products indicate that the Co-Gd interaction is ferromagnetic when high spin Co ions are concerned and antiferromagnetic in the case of low spin Co ions. This different magnetic behavior can be explained if we observe that the singly occupied σ d(x(2)-y(2)) orbital is populated (S = 3/2 Co ions) or unoccupied (S = 1/2 Co ions). Such an observation furnishes invaluable information for the understanding of the more general 3d-4f magnetic interactions.  相似文献   

3.
Following a bottom-up approach to nanomaterials, we present a rational synthetic route from hexacyanometalates [M(CN)(6)](3-) (M=Cr(III), Co(III)) cores to well-defined heptanuclear complexes. By changing the nature of the metallic cations and using a localised orbital model it is possible to control and to tune the ground state spin value. Thus, with M=Cr(III), d(3), S=3/2, three heptanuclear species were built and characterised by mass spectrometry in solution, by single-crystal X-ray diffraction and by powder magnetic susceptibility measurements, [Cr(III)(CNbondM'L(n))(6)](9+) (M'=Cu(II), Ni(II), Mn(II), L(n)=polydentate ligand), showing spin ground states S(G)=9/2 [Cu(II)], with ferromagnetic interactions J(Cr,Cu)=+45 cm(-1), S(G)=15/2 [Ni(II)] and J(Cr,Ni)=+17.3 cm(-1), S(G)=27/2 [Mn(II)], with an antiferromagnetic interaction J(Cr,Mn)=-9 cm(-1), (interaction Hamiltonian H=-J(Cr,M) [S(Cr)Sigma(i)S(M)(i)], i=1-6). With M=Co(III), d(6), S=0, the heptanuclear analogues [Co(III)(CN-M'L(n))(6)](9+) (M'=Cu(II), Ni(II), Mn(II)) were similarly synthesised and studied. They present a singlet ground state and allow us to evaluate the weak antiferromagnetic coupling constant between two next-nearest neighbours M'-Co-M'.  相似文献   

4.
The ground-state electronic structure of the trinuclear complex Cu3(dpa)4Cl2 (1), where dpa is the anion of di(2-pyridyl)amine, has been investigated within the framework of density functional theory (DFT) and compared with that obtained for other known M3(dpa)4Cl2 complexes (M = Cr, Co, Ni) and for the still hypothetical Ag3(dpa)4Cl2 compound. Both coinage metal compounds display three singly occupied x2-y2-like (delta) orbitals oriented toward the nitrogen environment of each metal atom, generating antibonding M-(N4) interactions. All other metal orbital combinations are doubly occupied, resulting in no delocalized metal-metal bonding. This is at variance with the other known symmetric M3(dpa)4Cl2 complexes of the first transition series, which all display some delocalized bonding through the metal backbone, with formal bond multiplicity decreasing in the order Cr > Co > Ni. An antiferromagnetic coupling develops between the singly occupied MOs via a superexchange mechanism involving the bridging dpa ligands. This magnetic interaction can be considered as an extension to the three aligned Cu(II) atoms of the well-documented exchange coupling observed in carboxylato-bridged dinuclear copper compounds. Broken-symmetry calculations with approximate spin projection adequately reproduce the coupling constant observed for 1. Oxidation of 1 removes an electron from the magnetic orbital located on the central Cu atom and its ligand environment; 1+ displays a much weaker antiferromagnetic interaction coupling the terminal Cu-N4 moieties via four ligand pathways converging through the x2-y2 orbital of the central metal. The silver homologues of 1 and 1+ display similar electronic ground states, but the calculated magnetic couplings are stronger by factors of about 3 and 4, respectively, resulting from a better overlap between the metal centers and their equatorial ligand environment within the magnetic orbitals.  相似文献   

5.
A new mononuclear cobalt(Ⅲ) complex [Co(dpa)2(Gly)](ClO4)2·4H2O was synthesized by the reaction of Co2 , glycine (gly) and 2,2'-dipyridylamine (dpa) in a methanol-water solution, and its structure was characterized by IR, EA, ES-MS and X-ray structure analysis. The compound crystallizes in the monoclinic system, space group P21/n with a = 12.8795(2), b =13.2904(2), c = 19.1104(2) (A),β= 109.378(1)°, V= 3085.89(8) (A)3, Z = 4, Mr = 746.36, Dc = 1.606g/cm3,μ= 0.808 mm-1, F(000) = 1536, the final R = 0.0543 and wR = 0.1306 for 5393 independent reflections. The magnetic measurement of the compound at room temperature shows that it is diamagnetic and the cobalt ion is in low spin 3 oxidation state. ES-MS experiments show that the [Co(dpa)2(Gly)]2 cation is very stable in the methanol solution.  相似文献   

6.
A change in the electronic spin state of the surfaces relevant to Li (de)intercalation of nanosized stoichiometric lithium cobalt oxide LiCo(III)O(2) from low-spin to intermediate and high spin is observed for the first time. These surfaces are the ones that are relevant for Li (de)intercalation. From density functional theory calculations with a Hubbard U correction, the surface energies of the layered lithium cobalt oxide can be significantly lowered as a consequence of the spin change. The crystal field splitting of Co d orbitals is modified at the surface due to missing Co-O bonds. The electronic spin transition also has a significant impact on Co(III)-Co(IV) redox potential, as revealed by the change in the lithium (de)intercalation voltage profile in a lithium half cell.  相似文献   

7.
The electronic structures of six-coordinate iron(III) octaethylmonoazaporphyrins, [Fe(MAzP)L 2] (+/-) ( 1), have been examined by means of (1)H NMR and EPR spectroscopy to reveal the effect of meso-nitrogen in the porphyrin ring. The complexes carrying axial ligands with strong field strengths such as 1-MeIm, DMAP, CN (-), and (t)BuNC adopt the low-spin state with the (d xy ) (2)(d xz , d yz ) (3) ground state in a wide temperature range where the (1)H NMR and EPR spectra are taken. In contrast, the complexes with much weaker axial ligands, such as 4-CNPy and 3,5-Cl 2Py, exhibit the spin transition from the mainly S = 3/2 at 298 K to the S = 1/2 with the (d xy ) (2)(d xz , d yz ) (3) ground state at 4 K. Only the THF complex has maintained the S = 3/2 throughout the temperature range examined. Thus, the electronic structures of 1 resemble those of the corresponding iron(III) octaethylporphyrins, [Fe(OEP)L 2] (+/-) ( 2). A couple of differences have been observed, however, in the electronic structures of 1 and 2. One of the differences is the electronic ground state in low-spin bis( (t)BuNC) complexes. While [Fe(OEP)( (t)BuNC) 2] (+) adopts the (d xz , d yz ) (4)(d xy ) (1) ground state, like most of the bis( (t)BuNC) complexes reported previously, [Fe(MAzP)( (t)BuNC) 2] (+) has shown the (d xy ) (2)(d xz , d yz ) (3) ground state. Another difference is the spin state of the bis(3,5-Cl 2Py) complexes. While [Fe(OEP)(3,5-Cl 2Py) 2] (+) has maintained the mixed S = 3/2 and 5/2 spin state from 298 to 4 K, [Fe(MAzP)(3,5-Cl 2Py) 2] (+) has shown the spin transition mentioned above. These differences have been ascribed to the narrower N4 cavity and the presence of lower-lying pi* orbital in MAzP as compared with OEP.  相似文献   

8.
1H NMR, (13)C NMR, and EPR spectra of six-coordinate ferric porphyrin complexes [Fe(Por)L2]ClO4 with different porphyrin structures are presented, where porphyrins (Por) are planar 5,10,15,20-tetraphenylporphyrin (TPP), ruffled 5,10,15,20-tetraisopropylporphyrin (TiPrP), and saddled 2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetraphenylporphyrin (OETPP), and axial ligands (L) are weak oxygen ligands such as pyridine-N-oxide, substituted pyridine-N-oxide, DMSO, DMF, MeOH, THF, 2-MeTHF, and dioxane. These complexes exhibit the spin states ranging from an essentially pure high-spin (S = 5/2) to an essentially pure intermediate-spin (S = 3/2) state depending on the field strength of the axial ligands and the structure of the porphyrin rings. Reed and Guiset reported that the pyrrole-H chemical shift is a good probe to determine the spin state in the spin admixed S = 5/2,3/2 complexes (Reed, C. A.; Guiset, F. J. Am. Chem. Soc. 1996, 118, 3281-3282). In this paper, we report that the chemical shifts of the alpha- and beta-pyrrole carbons can also be good probes to determine the spin state because they have shown good correlation with those of the pyrrole-H or pyrrole-C(alpha). By putting the observed or assumed pyrrole-H or pyrrole-C(alpha) chemical shifts of the pure high-spin and pure intermediate-spin complexes into the correlation equations, we have estimated the carbon chemical shits of the corresponding complexes. The orbital interactions between iron(III) and porphyrin have been examined on the basis of these chemical shifts, from which we have found that both the d(xy)-a(2u) interaction in the ruffled Fe(T(i)PrP)L2+ and d(xy)-a(1u) interaction in the saddled Fe(OETPP)L2+ are quite weak in the high-spin and probably in the intermediate-spin complexes as well. Close inspection of the correlation lines has suggested that the electron configuration of an essentially pure intermediate-spin Fe(T(i)PrP)L2+ changes from (d(xy), d(yz))3(d(xy))1(d(z)2)1 to (d(xy))2(d(xz), d(yz))2(d(z)2)1 as the axial ligand (L) changes from DMF to MeOH, THF, 2-MeTHF, and then to dioxane. Although the DFT calculation has indicated that the highly saddled intermediate-spin Fe(OETPP)(THF)2+ should adopt (d(xy), d(yz))3(d(xy))1(d(z)2)1 rather than (d(xy))2(d(xz), d(yz))2(d(z)2)1 because of the strong d(xy)-a(1u) interaction (Cheng, R.-J.; Wang, Y.-K.; Chen, P.-Y.; Han, Y.-P.; Chang, C.-C. Chem. Commun. 2005, 1312-1314), our 13C NMR study again suggests that Fe(OETPP)(THF)2+ should be represented as (d(xy))2(d(xz), d(yz))2(d(z)2)1 because of the weak d(xy)-a(1u) interaction. The contribution of the S = 3/2 state in all types of the spin admixed S = 5/2,3/2 six-coordinate complexes has been determined on the basis of the (13)C NMR chemical shifts.  相似文献   

9.
10.
Bond stretch isomerism, for which the molecular conformations differ only in the length of one or more bonds, is often difficult to evidence on purely experimental grounds. Quantum chemical modelling allows to make a clear distinction between the effects of an instability, either of steric, electronic, or magnetic origin, inherent to the molecular system and those that should be assigned to the molecular environment. DFT calculations carried out on compounds of the type MII 3(dpa)4Cl2 (M=Co, Cr; dpa=dipyridylamide) show that the unprecedented structural variability observed in these complexes should be related to the electronic structure of the molecule itself. In the case of Co3(dpa)4Cl2, a single minimum corresponding to the symmetric metal framework observed in the orthorhombic crystal was characterized on the doublet ground state potential energy surface. The presence of a unique energy minimum for the ground state rules out the possibility for bond stretch isomerism. However, a spin transition from doublet to quartet shifts the equilibrium geometry towards the unsymmetrical structure characterized at room temperature in the tetragonal crystal. The quintet ground state of Cr3(dpa)4Cl2 also corresponds to a symmetric equilibrium geometry, but a second quintet state corresponding to a slightly higher energy and a different spin coupling of the localized metal electrons breaks the symmetry of the metallic framework. If the relative energy of this second quintet state could be lowered by a change in the axial coordination, an instability favorable to bond stretch isomerism would be generated on the ground state potential surface. Finally, calculations carried out on some functionalized polyoxometalates suggest that the tuning of intramolecular redox processes involving polyoxoanions as rigid electron reservoirs could provide a route toward the design of chemical architectures displaying bond stretch isomerism.  相似文献   

11.
Here, we predict that the ferromagnetically coupled cobalt-benzene-cobalt system will act as the smallest molecular spin filter with unprecedented spin injection coefficient. To validate our in-silico observation, we have performed state-of-the-art nonequilibrium Green's function calculations and analyzed the density of states of cobalt at the relativistic and nonrelativistic level of theory. Remarkably, we found that unpaired 3d electrons of cobalt are not participating in the spin transport process like other transition metal containing multidecker complexes. Instead, an admixture of the outer-sphere 4s and 4p orbitals of cobalt along with the 2p orbital of carbon of the benzene moiety is contributing to the singly occupied highest molecular orbital in the majority spin channel that creates a path for coherent spin transport leading to the extremely high spin injection coefficient of the system. The absence of the 3d electrons of cobalt in the spin transport process has been carefully examined, and it was found that the nodal structure of the 3d orbital of cobalt is not at all suitable for bonding in the cobalt-benzene-cobalt system. The whole study indicates that the underlying mechanism of the spin filter action in cobalt-benzene-cobalt is completely distinctive from the other known materials.  相似文献   

12.
As a model system for the photoinduced/photoswitched spin alignment in a purely organic pi-conjugated spin system, 9-[4-(4,4,5,5-tetramethyl-1-yloxyimidazolin-2-yl)phenyl]anthracene (1a), 9-[3-(4,4,5,5-tetramethyl-1-yloxyimidazolin-2-yl)phenyl]anthracene (1b), 9,10-bis[4-(4,4,5,5-tetramethyl-1-yloxyimidazolin-2-yl)phenyl]anthracene (2a), and 9,10-bis[3-(4,4,5,5-tetramethyl-1-yloxyimidazolin-2-yl)phenyl]anthracene (2b) were designed and synthesized. In these spin systems, 9-phenylanthracene and 9,10-diphenylanthracene were chosen as photo spin couplers and iminonitroxide was chosen as a dangling stable radical. Time-resolved electron spin resonance (TRESR) spectra of the first excited states with resolved fine-structure splittings were observed for 1a and 2a in an EPA or a 2-MTHF rigid glass matrix. Using the spectral simulation based on the eigenfield method, the observed TRESR spectra for 1a and 2a were unambiguously assigned as an excited quartet (S = 3/2) spin state (Q) and an excited quintet (S = 2) spin state (Qu), respectively. The g value and fine-structure splitting for the quartet state of 1a were determined to be g(Q) = 2.0043, D(Q) = 0.0235 cm(-1), and E(Q) = 0.0 cm(-1). The relative populations (polarization) of each M(S)() sublevel in Q were determined to be P(+1/2') = P(-1/2') = 0.5 and P(+3/2') = P(-3/2') = 0.0 with an increasing order of energy in zero magnetic field. The spin Hamiltonian parameters for Qu are g = 2.0043, D = 0.0130 cm(-1), and E = 0.0 cm(-1), and the relative populations in Qu were determined to be P(0') = 0.30, P(-1') = P(+1') = 0.35 and P(-2') = P(+2') = 0.0. These are the first observations of a photoexcited quartet and a quintet high-spin state in pi-conjugated triplet-radical pair systems. In contrast high-spin excited states were not observed for 1b and 2b, the pi-topological isomers of 1a and 2a, showing the role of pi-topology in the spin alignment of the excited states. Since a weak antiferromagnetic exchange interaction was observed in the ground state of 2a, the clear detection of the excited quintet high-spin state shows that the effective exchange coupling between the two dangling radicals through the diphenylanthracene spin coupler has been changed from antiferromagnetic to ferromagnetic upon photoexcitation. Thus, a photoinduced spin alignment utilizing the excited triplet molecular field was realized for the first time in the purely organic pi-conjugated spin system. Furthermore, the mechanism for the generation of dynamic electron spin polarization was investigated for the observed quartet and quintet states, and a plausible mechanism of the enhanced selective intersystem crossing was proposed. Ab initio molecular orbital calculations based on density functional theory were carried out to determine the electronic structures of the excited high-spin states and to understand the mechanism of the spin alignment utilizing the excited molecular field. The role of the spin delocalization and the spin polarization mechanisms were revealed on the photoexcited state.  相似文献   

13.
A new mononuclear cobalt(III) complex [Co(dpa)2(Gly)](ClO4)2′4H2O was synthesized by the reaction of Co2+, glycine (gly) and 2,2′-dipyridylamine (dpa) in a methanol-water solution, and its structure was characterized by IR, EA, ES-MS and X-ray structure analysis. The compound crystallizes in the monoclinic system, space group P21/n with a = 12.8795(2), b = 13.2904(2), c = 19.1104(2) , β = 109.378(1)°, V = 3085.89(8) 3, Z = 4, Mr = 746.36, Dc = 1.606 g/cm3, μ = 0.808 mm-1, F(000) = 1536, the final R = 0.0543 and wR = 0.1306 for 5393 independent reflections. The magnetic measurement of the compound at room temperature shows that it is diamagnetic and the cobalt ion is in low spin +3 oxidation state. ES-MS experiments show that the [Co(dpa)2(Gly)]2+ cation is very stable in the methanol solution.  相似文献   

14.
Two novel heterobimetallic complexes of formula [Cr(bpy)(ox)(2)Co(Me(2)phen)(H(2)O)(2)][Cr(bpy)(ox)(2)]·4H(2)O (1) and [Cr(phen)(ox)(2)Mn(phen)(H(2)O)(2)][Cr(phen)(ox)(2)]·H(2)O (2) (bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and Me(2)phen = 2,9-dimethyl-1,10-phenanthroline) have been obtained through the "complex-as-ligand/complex-as-metal" strategy by using Ph(4)P[CrL(ox)(2)]·H(2)O (L = bpy and phen) and [ML'(H(2)O)(4)](NO(3))(2) (M = Co and Mn; L' = phen and Me(2)phen) as precursors. The X-ray crystal structures of 1 and 2 consist of bis(oxalato)chromate(III) mononuclear anions, [Cr(III)L(ox)(2)](-), and oxalato-bridged chromium(III)-cobalt(II) and chromium(III)-manganese(II) dinuclear cations, [Cr(III)L(ox)(μ-ox)M(II)L'(H(2)O)(2)](+)[M = Co, L = bpy, and L' = Me(2)phen (1); M = Mn and L = L' = phen (2)]. These oxalato-bridged Cr(III)M(II) dinuclear cationic entities of 1 and 2 result from the coordination of a [Cr(III)L(ox)(2)](-) unit through one of its two oxalato groups toward a [M(II)L'(H(2)O)(2)](2+) moiety with either a trans- (M = Co) or a cis-diaqua (M = Mn) configuration. The two distinct Cr(III) ions in 1 and 2 adopt a similar trigonally compressed octahedral geometry, while the high-spin M(II) ions exhibit an axially (M = Co) or trigonally compressed (M = Mn) octahedral geometry in 1 and 2, respectively. Variable temperature (2.0-300 K) magnetic susceptibility and variable-field (0-5.0 T) magnetization measurements for 1 and 2 reveal the presence of weak intramolecular ferromagnetic interactions between the Cr(III) (S(Cr) = 3/2) ion and the high-spin Co(II) (S(Co) = 3/2) or Mn(II) (S(Mn) = 5/2) ions across the oxalato bridge within the Cr(III)M(II) dinuclear cationic entities (M = Co and Mn) [J = +2.2 (1) and +1.2 cm(-1) (2); H = -JS(Cr)·S(M)]. Density functional electronic structure calculations for 1 and 2 support the occurrence of S = 3 Cr(III)Co(II) and S = 4 Cr(III)Mn(II) ground spin states, respectively. A simple molecular orbital analysis of the electron exchange mechanism suggests a subtle competition between individual ferro- and antiferromagnetic contributions through the σ- and/or π-type pathways of the oxalato bridge, mainly involving the d(yz)(Cr)/d(xy)(M), d(xz)(Cr)/d(xy)(M), d(x(2)-y(2))(Cr)/d(xy)(M), d(yz)(Cr)/d(xz)(M), and d(xz)(Cr)/d(yz)(M) pairs of orthogonal magnetic orbitals and the d(x(2)-y(2))(Cr)/d(x(2)-y(2))(M), d(xz)(Cr)/d(xz)(M), and d(yz)(Cr)/d(yz)(M) pairs of nonorthogonal magnetic orbitals, which would be ultimately responsible for the relative magnitude of the overall ferromagnetic coupling in 1 and 2.  相似文献   

15.
Multifrequency electron paramagnetic resonace (EPR) spectroscopy and electronic structure calculations were performed on [Co(4)O(4)(C(5)H(5)N)(4)(CH(3)CO(2))(4)](+) (1(+)), a cobalt tetramer with total electron spin S = 1/2 and formal cobalt oxidation states III, III, III, and IV. The cuboidal arrangement of its cobalt and oxygen atoms is similar to that of proposed structures for the molecular cobaltate clusters of the cobalt-phosphate (Co-Pi) water-oxidizing catalyst. The Davies electron-nuclear double resonance (ENDOR) spectrum is well-modeled using a single class of hyperfine-coupled (59)Co nuclei with a modestly strong interaction (principal elements of the hyperfine tensor are equal to [-20(±2), 77(±1), -5(±15)] MHz). Mims (1)H ENDOR spectra of 1(+) with selectively deuterated pyridine ligands confirm that the amount of unpaired spin on the cobalt-bonding partner is significantly reduced from unity. Multifrequency (14)N ESEEM spectra (acquired at 9.5 and 34.0 GHz) indicate that four nearly equivalent nitrogen nuclei are coupled to the electron spin. Cumulatively, our EPR spectroscopic findings indicate that the unpaired spin is delocalized almost equally across the eight core atoms, a finding corroborated by results from DFT calculations. Each octahedrally coordinated cobalt ion is forced into a low-spin electron configuration by the anionic oxo and carboxylato ligands, and a fractional electron hole is localized on each metal center in a Co 3d(xz,yz)-based molecular orbital for this essentially [Co(+3.125)(4)O(4)] system. Comparing the EPR spectrum of 1(+) with that of the catalyst film allows us to draw conclusions about the electronic structure of this water-oxidation catalyst.  相似文献   

16.
Gao GG  Xu L  Wang WJ  Qu XS  Liu H  Yang YY 《Inorganic chemistry》2008,47(7):2325-2333
New Keggin-type cobalt(II)/nickel(II)-centered heteropolymolybdates, (C3H5N2)6[Co(II)Mo12O40]10H2O (1) and (NH4)3(C4H5N2O2)3[Ni(II)Mo12O40] (2), were isolated and characterized by IR, UV-vis, single-crystal X-ray diffraction, thermogravimetric, magnetic, as well as electrochemical analyses. The polyanion in the two compounds displays the well-known alpha-Keggin structure, which is composed of four Mo3O13 units formed by edge-sharing octahedra. Four Mo3O13 units connect each other by vertices, and the Co(2+) or Ni(2+) is located in the center. Magnetic measurements show that the central Co(2+) and Ni(2+) are in high spin states (with S = 3/2 and S = 1, respectively) exhibiting paramagnetic behaviors. Cyclic voltammetric experiments for 1 represent a quasi-reversible one-electron redox Co(3+)/Co(2+) couple and two four-electron reversible redox processes ascribed to Mo centers, while 2 only shows two four-electron redox processes attributed to Mo centers in pH = 0.5 H2SO4 solution.  相似文献   

17.
The electronic structure of cis,trans-(L-N(2)S(2))MoO(X) (where L-N(2)S(2) = N,N'-dimethyl-N,N'-bis(2-mercaptophenyl)ethylenediamine and X = Cl, SCH(2)C(6)H(5), SC(6)H(4)-OCH(3), or SC(6)H(4)CF(3)) has been probed by electronic absorption, magnetic circular dichroism, and resonance Raman spectroscopies to determine the nature of oxomolybdenum-thiolate bonding in complexes possessing three equatorial sulfur ligands. One of the phenyl mercaptide sulfur donors of the tetradentate L-N(2)S(2) chelating ligand, denoted S(180), coordinates to molybdenum in the equatorial plane such that the OMo-S(180)-C(phenyl) dihedral angle is approximately 180 degrees, resulting in a highly covalent pi-bonding interaction between an S(180) p orbital and the molybdenum d(xy) orbital. This highly covalent bonding scheme is the origin of an intense low-energy S --> Mo d(xy) bonding-to-antibonding LMCT transition (E(max) approximately 16000 cm(-)(1), epsilon approximately 4000 M(-)(1) cm(-)(1)). Spectroscopically calibrated bonding calculations performed at the DFT level of theory reveal that S(180) contributes approximately 22% to the HOMO, which is predominantly a pi antibonding molecular orbital between Mo d(xy) and the S(180) p orbital oriented in the same plane. The second sulfur donor of the L-N(2)S(2) ligand is essentially nonbonding with Mo d(xy) due to an OMo-S-C(phenyl) dihedral angle of approximately 90 degrees. Because the formal Mo d(xy) orbital is the electroactive or redox orbital, these Mo d(xy)-S 3p interactions are important with respect to defining key covalency contributions to the reduction potential in monooxomolybdenum thiolates, including the one- and two-electron reduced forms of sulfite oxidase. Interestingly, the highly covalent Mo-S(180) pi bonding interaction observed in these complexes is analogous to the well-known Cu-S(Cys) pi bond in type 1 blue copper proteins, which display electronic absorption and resonance Raman spectra that are remarkably similar to these monooxomolybdenum thiolate complexes. Finally, the presence of a covalent Mo-S pi interaction oriented orthogonal to the MOO bond is discussed with respect to electron-transfer regeneration in sulfite oxidase and Mo=S(sulfido) bonding in xanthine oxidase.  相似文献   

18.
Compounds of the type M(2)Bz(3) (Bz = benzene, C(6)H(6)) have been of interest since the related triple-decker mesitylenechromium sandwich (1,3,5-Me(3)C(6)H(3))(3)Cr(2) has been synthesized and characterized structurally by X-ray crystallography. Theoretical studies predict the lowest-energy M(2)Bz(3) structures of the early transition metals Ti, V, and Cr to be the triple-decker sandwiches trans-Bz(2)M(2)(η(6),η(6)-μ-C(6)H(6)) having quintet, triplet, and singlet spin states, respectively. In these structures, the central benzene ring functions as a hexahapto ligand to each metal atom. The singlet rice-ball cis-Bz(2)M(2)(μ-C(6)H(6)) structures with a 2.64-? Mn═Mn double bond or a 2.81-? Fe-Fe single bond are preferred for the central transition metals Mn and Fe. Singlet triple-decker-sandwich structures trans-Bz(2)M(2)(μ-C(6)H(6)) return as the lowest-energy structures for the late transition metals Co and Ni but with the central benzene ring only partially bonded to each metal atom. Thus, the lowest-energy cobalt derivative has a trans-Bz(2)Co(2)(η(3),η(3)-μ-C(6)H(6)) structure in which the central benzene ring acts as a trihapto ligand to each metal atom. Similarly, the lowest-energy nickel derivative has a trans-Bz(2)Ni(2)(η(2),η(2)-μ-C(6)H(6)) structure in which the central benzene ring acts as a dihapto ligand to each metal atom, leaving an uncomplexed C═C double bond. The metal-metal bond orders in the singlet "rice-ball" structures cis-Bz(2)M(2)(μ-C(6)H(6)) (M = Mn, Fe) and the hapticities of the central benzene rings in the singlet late-transition-metal triple-decker-sandwich structures trans-Bz(2)M(2)(μ-C(6)H(6)) (M = Co, Ni) are governed by the desirability for the metal atoms to attain the favored 18-electron configuration.  相似文献   

19.
The spin states of the iron(III) complexes with a highly ruffled porphyrin ring, [Fe(TEtPrP)X] where X = F-, Cl-, Br-, I-, and ClO4(-), have been examined by 1H NMR, 13C NMR, EPR, and M?ssbauer spectroscopy. While the F-, Cl-, and Br- complexes adopt a high-spin (S = 5/2) state, the I- complex exhibits an admixed intermediate-spin (S = 5/2, 3/2) state in CD2Cl2 solution. The I- complex shows, however, a quite pure high-spin state in toluene solution as well as in the solid. The results contrast those of highly saddled [Fe(OETPP)X] where the I- complex exhibits an essentially pure intermediate-spin state both in solution and in the solid. In contrast to the halide-ligated complexes, the ClO4(-) complex shows a quite pure intermediate-spin state. The 13C NMR spectra of [Fe(TEtPrP)ClO4] are characterized by the downfield and upfield shifts of the meso and pyrrole-alpha carbon signals, respectively: delta(meso) = +342 and delta(alpha-py) = -287 ppm at 298 K. The data indicate that the meso carbon atoms of [Fe(TEtPrP)ClO4] have considerable amounts of positive spin, which in turn indicate that the iron has an unpaired electron in the d(xy) orbital; the unpaired electron in the d(xy) orbital is delocalized to the meso positions due to the iron(d(xy))-porphyrin(a(2u)) interaction. Similar results have been obtained in analogous [Fe(TiPrP)X] though the intermediate-spin character of [Fe(TiPrP)X] is much larger than that of the corresponding [Fe(TEtPrP)X]. On the basis of these results, we have concluded that the highly ruffled intermediate-spin complexes such as [Fe(TEtPrP)ClO4] and [Fe(TiPrP)ClO4] adopt a novel (d(xz), d(yz))3(d(xy))1(d(z)(2)1 electron configuration; the electron configuration of the intermediate-spin complexes reported previously is believed to be (d(xy))2(d(xz)), d(yz))2(d(z)(2))1.  相似文献   

20.
Density functional calculations on a nonheme biomimetic (Fe=O(TMCS+) have been performed and its catalytic properties versus propene investigated. Our studies show that this catalyst is able to chemoselectively hydroxylate C=H bonds even in the presence of C=C double bonds. This phenomenon has been analyzed and found to occur due to Pauli repusions between protons on the TMCS ligand with protons attached to the approaching substrate. The geometries of the rate determining transition states indicate that the steric hindrance is larger in the epoxidation transition states than in the hydroxylation ones with much shorter distances; hence the hydroxylation pathway is favored over the epoxidation. Although, the reactant experiences close lying triplet and quintet spin states, the dominant reaction mechanism takes place on the quintet spin state surface; i.e., Fe=O(TMCS)+ reacts via single-state reactivity. Our calculations show that this spin state selectivity is the result of geometric orientation of the transition state structures, whereby the triplet ones are destabilized by electrostatic repulsions between the substrate and the ligand while the quintet spin transition states are aligned along the ideal axis. The reactivity patterns and geometries are compared with oxoiron species of dioxygenase and monoxygenase enzymes. Thus, Fe=O(TMCS)+ shows some similarities with P450 enzyme reactivity: it chemoselectively hydroxylates C=H bonds even in the presence of a C=C double bond and therefore is an acceptable P450 biomimetic. However, the absolute barriers of substrate oxidation by Fe=O(TMCS)+ are higher than the ones obtained with heme enzymes, but the chemoselectivity is lesser affected by external perturbations such as hydrogen bonding of a methanol molecule toward the thiolate sulfur or a dielectric constant. This is the first oxoiron complex whereby we calculated a chemoselective hydroxylation over epoxidation in the gas phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号