首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main objective of the present work is enhancement of the performance of gas hydrate kinetic inhibitors in the presence of polyethylene oxide (PEO) and polypropylene oxide (PPO) for simple gas hydrate formation in a flow mini-loop apparatus. PEO and PPO are high molecular weight polymers that are not kinetic inhibitors by their self. For this investigation, a laboratory flow mini-loop apparatus was set up to measure the induction time and rate of gas hydrate formation when a hydrate-forming substance (such as C1, C3, CO2 and i-C4) is contacted with water containing dissolved inhibitor in presence or absence of PEO or PPO under suitable temperature and pressure conditions. In each experiment, water containing inhibitors blend saturated with pure gas is circulated up to a required pressure. Pressure is maintained at a constant value during experimental runs by means of required gas make-up. The effect of PEO and PPO on induction time and gas consumption during hydrate formation is investigated in the presence or absence of PVP (polyvinylpyrrolidone) and l-tyrosine as kinetic inhibitors. Results were shown that the induction time is prolonged in the presence of PEO or PPO compared to the inhibitor only. Inclusion of PPO into a kinetic hydrate inhibitor solution shows a higher enhancement in its inhibiting performance compare to PEO. Thus, the induction time for simple gas hydrate formation in presence of kinetic hydrate inhibitor with PPO is higher, compare to kinetic hydrate inhibitor with PEO.  相似文献   

2.
水合物管道堵塞是油气工业安全生产的重要问题之一, 目前低剂量抑制剂以其经济性、环境友好性等优点, 逐步取代传统抑制剂. 文中在8.5 MPa、4 ℃条件下, 1.072 L反应釜内, 采用甲烷、乙烷和丙烷混和气, 研究了含低剂量抑制剂聚乙烯吡咯烷酮(PVP)和GHI1的水合物生成体系反应过程, 计算分析了压缩因子和自由气量随反应时间的变化, 对比了在相同反应程度下添加PVP和GHI1后水合物含气量的区别, 探讨了GHI1组合抑制剂的抑制机理. 实验结果表明PVP和GHI1能抑制水合物生长, 不能有效抑制水合物成核; 添加PVP的体系, 在实验气体组成下, 甲烷乙烷进入水合物小晶穴, 并且甲烷优先进入小晶穴; GHI1对丙烷乙烷的抑制能力强于甲烷; 对比GHI1和PVP的反应过程, 认为协同剂二乙二醇丁醚的羟基和醚类结构加强反应体系中的氢键, 和PVP结合使用, 通过氢键和空阻达到抑制效果.  相似文献   

3.
Gas hydrates are ice-like crystalline compounds, which form through a combination of water and suitably sized guest molecules under low temperature and elevated pressure conditions. These solid compounds give rise to problems in the natural gas oil industry because they can plug pipelines and process equipment. Low dosage hydrate inhibitors are a recently developed hydrate control technology, which can be more cost-effective than traditional practices such as methanol and glycols. The kinetics of hydrate growth has been modeled by numerous authors who have measured the gas consumption rate during hydrate formation in batch agitator reactors.  相似文献   

4.
Amphiphilic block copolymers of short poly(styrene) (PS) or poly(2,3,4,5,6-pentafluorostyrene) (PPFS) segments with comparatively longer poly(vinyl acetate) or poly(vinylpyrrolidone) (PVP) segments are synthesized using a 2-cyanopropan-2-yl N-methyl-N-(pyridin-4-yl)dithiocarbamate switchable reversible addition–fragmentation chain transfer (RAFT) agent toward application as kinetic gas hydrate inhibitors (KHIs). Polymerization conditions are optimized to provide water-soluble block copolymers by first polymerizing more activated monomers such as S and PFS to form a defined macro chain-transfer agent (linear degree of polymerization with conversion, comparatively low dispersity) followed by chain extensions with less activated monomers VAc or VP by switching to the deprotonated form of the RAFT agent. The critical micelle concentrations of these amphiphilic block copolymers (after VAc unit hydrolysis to vinyl alcohol units) are measured using zeta surface potential measurements to estimate physical behavior once mixed with the hydrates. A PS-poly(vinyl alcohol) block copolymer improved inhibition to 49% compared to the pure methane–water system with no KHIs. This inhibition was further reduced by 27% by substituting the PS with a more hydrophobic PPFS. A block copolymer of PS–PVP exhibited 20% greater inhibition than the PVP homopolymer and substituting PS with a more hydrophobic PPFS resulted in a 35% further decreased in methane KHI. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2445–2457, 56, 2445–2457  相似文献   

5.
The hydrate inhibition effect of three kinetic inhibitors (inhibex 301, 501, and 713) was assessed from (CH4 + C2H6 + C3H8) gas mixture + brine systems using a high pressure sapphire cell. The onset time of hydrate formation was determined by visual observation method and pressure drop profile method, respectively. The experimental results demonstrated that the onset time was able to be determined by the visual observation method all the time while the pressure drop profile method failed to detect the onset time clearly and correctly at lower temperatures. In some cases, the initial appearance of hydrate crystals cannot induce a clear break in the pressure–time relationship curve. The onset time measured by the visual observation method is usually shorter than or at least the same as that determined by the pressure drop profile method. The inhibiting effect on the growth of hydrate crystals can be shown by the difference of the onset time obtained by the two methods. The maximum tolerated subcooling of each inhibitor was also investigated based on the onset time. It was found that inhibex 301 behaves as the best inhibitor that can tolerate the maximum subcooling of 8.3 K at 0.5 wt% and 10.6 K at 1.0 wt%, respectively. The maximum subcooling for inhibex 501 is 6.8 K at 0.5 wt% and 6.6 K at 1.0 wt%, respectively. Inhibex 713 has relatively poor inhibiting effect among the three inhibitors with the maximum subcooling of less than 3.5 K at 0.5 wt% and 5.1 K at 1.0 wt%, respectively.  相似文献   

6.
Kinetics of hydrate formation using gas bubble suspended in water   总被引:5,自引:0,他引:5  
An innovative experimental technique, which was devised to study the effects of temperature and pressure on the rate of hydrate formation at the surface of a gas bubble suspended in a stagnant water phase, was adapted in this work. Under such conditions, the hydrate-growth process is free from dynamic mass transfer factors. The rate of hydrate formation of methane and carbon dioxide has been systematically studied. The measured hydrate-growth data were correlated by using the molar Gibbs free energy as driving force. In the course of the experiments, some interesting surface phenomena were observed.  相似文献   

7.
This paper compares the effects of using various types of equations of state (PR,1 SRK,2 ER,3 PT4 and VPT5) on the calculated driving force and rate of gas consumption based on the Kashchiev and Firoozabadi model for simple gas hydrate formation for methane, carbon dioxide, propane and iso-butane with experimental data points obtained in a flow mini-loop apparatus with or without the presence of kinetic inhibitors at various pressures and specified temperatures. For this purpose, a laboratory flow mini-loop apparatus was set up to measure gas consumption rate when a hydrate forming substance (such as C1, C3, CO2 and i-C4) is contacted with water in the presence or absence of dissolved inhibitor under suitable temperature and pressure conditions. In each experiment, a water blend saturated with pure gas is circulated up to a required pressure. Pressure is maintained at a constant value during experimental runs by means of the required gas make-up. The total average absolute deviation was found to be 15.4%, 16.3%, 15.8%, 17.8% and 17.4% for the PR, ER, SRK, PT and VPT equations of state for calculating gas consumption in simple gas hydrate formation with or without the presence of kinetic hydrate inhibitors, respectively. Comparison results between the calculated and experimental data points of gas consumption were obtained in flow loop indicate that the PR and ER equations of state have lower errors than the SRK, VPT and PT equations of state for this model.  相似文献   

8.
A new high performance gas hydrate inhibitor   总被引:1,自引:0,他引:1       下载免费PDF全文
In petroleum exploration and production operations, gas hydrates pose serious flow assurance, economic and safety concerns. Thermodynamic inhibitors are widely used to reduce the risks associated with gas hydrate formation. In the present study, systematic laboratory work was undertaken to determine synergistic effects between methanol and a Poly Vinyl Methyl Ether as Low Dosage Hydrate Inhibitors (LDHIs). A valuable effect was discovered at a certain ratio of methanol to the low dosage hydrate inhibitor.  相似文献   

9.
Gas hydrates are crystalline compounds formed (usually above 0℃) by water reacting with some gases or volatile liquids (hydrate former). Guest molecules, such as gas or volatile liquid molecules, are enclosed firmly inside the host cavities and act with water molecules in weak van der Waals force. Gas hydrate usually includes natural gas hydrate, refrigerant gas hydrate and CO2 gas hydrate. Refrigerant hydrates can be formed above 0℃, and their crystallization is similar to the ordinary ice…  相似文献   

10.
针对深水钻井中水基钻井液易形成天然气水合物从而导致钻井作业无法正常进行的问题,利用自行设计研制的气体水合物反应装置,模拟深水钻井温度压力条件,对水基钻井液添加剂进行了天然气水合物形成的实验研究。分析了各实验体系形成水合物的过冷度。以过冷度为评价指标,评价了各种钻井液添加剂在深水钻井水合物形成过程中的作用。结果表明,在钻井液使用的加量范围内,阳离子聚丙烯酰胺CPAM、两性离子聚合物FA367等对天然气水合物的形成有抑制作用,且随着加量的增加抑制作用增强;磺甲基丹宁SMT、木质素磺酸盐FCLS对天然气水合物的形成有微弱的促进作用,但影响不大。聚合物添加剂的离子类型对天然气水合物的形成影响不大。  相似文献   

11.
Gas hydrates are crystalline compounds formedwhen gas molecules or volatile liquid molecules comein contact with water molecules through weak van derWaals force at favourable pressure and temperature.Refrigerant gas hydrates can be effectively formed atappropriate temperature (5—12℃) with a high reac-tion heat (320—380 kJ/kg). Because of their particularthermodynamic properties, refrigerant gas hydrate,especially low pressure refrigerant gas hydrate, hasbeen considered as one of the most pr…  相似文献   

12.
The effect of low-dosage water-soluble hydroxyethyl cellulose (approximate MW~90,000 and 250,000) as a member of hydroxyalkyl cellulosic polymer group on methane hydrate stability was investigated by monitoring hydrate dissociation at pressures greater than atmospheric pressure in a closed vessel. In particular, the influence of molecular weight and mass concentration of hydroxyethyl cellulose (HEC) was studied with respect to hydrate formation and dissociation. Methane hydrate formation was performed at 2℃ and at a pressure greater than 100 bar. Afterwards, hydrate dissociation was initiated by step heating from -10℃ at a mild pressure of 13 bar to 3℃, 0℃ and 2℃. With respect to the results obtained for methane hydrate formation/dissociation and the amount of gas uptake, we concluded that HEC 90,000 at 5000 ppm is suitable for long-term gas storage and transportation under a mild pressure of 13 bar and at temperatures below the freezing point.  相似文献   

13.
Natural gas hydrate shell model in gas-slurry pipeline flow   总被引:1,自引:0,他引:1       下载免费PDF全文
A hydrate shell model coupled with one-dimensional two-fluid pipe flow model was established to study the flow characteristics of gas-hydrate slurry flow system. The hydrate shell model was developed with kinetic limitations and mass transfer limitations, and it was solved by Euler method. The analysis of influence factors was performed. It was found that the diffusion coefficient was a key parameter in hydrate forming process. Considering the hydrate kinetics model and the contacting area between gas and water, the hydrate shell model was more close to its practical situations.  相似文献   

14.
In this paper, the effect of adding different concentrations of kinetic inhibitors on the induction time of hydrogen sulfide hydrate formation in a reactor equipped with automatic adjustable temperature controller is studied. A novel method namely “sudden cooling” is used for performing the relevant measurements, in which the induction time of H2S hydrate in the presence/absence of PVP and L-tyrosine with different concentrations (100, 500, and 1000 ppm) is determined. As a result, PVP with the concentration of 1000 ppm in aqueous solution is detected as a more suitable material for increasing the induction time of H2S hydrate formation among the investigated kinetic hydrate inhibitors.  相似文献   

15.
王虎  杨群慧  季福武  周怀阳  薛翔 《色谱》2011,29(1):70-74
利用微流路控制技术中心切割装置(Deans Switch)、两根色谱柱(PoraPLOT Q和Molsieve 5A)和3个检测器(脉冲氦离子化检测器、火焰光度检测器、热导检测器),建立了一种二维气相色谱分析系统,实现了海洋中多种示踪气体组分(氢气、甲烷、二氧化碳、硫化氢)的同时分析和精确测定。氢气、甲烷、二氧化碳、硫化氢的含量分别在2~1030、0.6~501、120~10500和0.2~49.1 μmol/mol范围内的校正曲线线性关系良好,检出限分别为0.51、0.17、82和0.08 μmol/mol,10次重复测定含量的相对标准偏差均小于10%。通过对南海天然气水合物区沉积物间隙水顶空气的测定,表明该方法方便、灵敏、可靠,易于实现海上现场测定;与以往采用多种分析方法分别测定示踪气体相比,大大节省了样品量。该方法适用于海洋天然气水合物、海底热液等资源的调查和海洋溶解态气体的研究等。  相似文献   

16.
《Mendeleev Communications》2022,32(6):823-824
It was shown that hydrated crystals of sodium dodecyl sulfate (SDS), which precipitate from dilute SDS solutions sharply accelerate nucleation of methane gas hydrate. This finding adds significant details to the available information on the mechanisms of hydrate formation from SDS solutions and can form the basis for the development of a new class of kinetic promoters of hydrate formation.  相似文献   

17.
An inherent problem with natural gas production or transmission is the formation of gas hydrates, which can lead to safety hazards to production/ transportation systems and to substantial economic risks. Therefore, an understanding of conditions where hydrates form is necessary to overcome hydrate related issues. Over the years, several models requiring more complicated and longer computations have been proposed for the prediction of hydrate formation conditions of natural gases. For these reasons, it is essential to develop a reliable and simple-to-use method for oil and gas practitioners. The purpose of this study is to formulate a novel empirical correlation for rapid estimation of hydrate formation condition of sweet natural gases. The developed correlation holds for wide range of temperatures (265–298 K), pressures (1200 to 40000 kPa) and molecular weights (16−29). New proposed correlation shows consistently accurate results across proposed pressure, temperature and molecular weight ranges. This consistency could not be matched by any of the widely accepted existing correlations within the investigated range. For all conditions, new correlation showed average absolute deviation to be less than 0.2% and provided much better results than the widely accepted existing correlations.  相似文献   

18.
A novel technique for separating hydrogen from (H2 CH4) gas mixtures through hydrate formation/dissociation was proposed. In this work, a systematic experimental study was performed on the separation of hydrogen from (H2 CH4) feed mixtures with various hydrogen contents (mole fraction x = 40%-90%). The experimental results showed that the hydrogen content could be enriched to as high as ~94% for various feed mixtures using the proposed hydrate technology under a temperature slightly above 0℃ and a pressure below 5.0 MPa. With the addition of a small amount of suitable additives, the rate of hydrate formation could be increased significantly. Anti-agglomeration was used to disperse hydrate particles into the condensate phase. Instead of preventing hydrate growth (as in the kinetic inhibitor tests), hydrates were allowed to form, but only as small dispersed particles. Anti-agglomeration could keep hydrate particles suspended in a range of condensate types at 1℃ and 5 MPa in the water-in-oil emulsion.  相似文献   

19.
《Fluid Phase Equilibria》1998,152(1):23-42
In the last 50 years, several studies have been performed on the measurement and prediction of hydrate forming conditions for various gas mixtures and inhibitors. Yet, the correlations presented in the literature are not accurate enough and consider most of the time, simple pure gases only and their mixtures. In addition, some of these correlations are presented mainly in graphical form, thus making it difficult to use them within general computer packages for simulation and design. The purpose of this paper is to present a comprehensive neural network model for predicting hydrate formation conditions for various pure gases, gas mixtures, and different inhibitors. The model was trained using 2387 input–output patterns collected from different reliable sources. The predictions are compared to existing correlations and also to real experimental data. The neural network model enables the user to accurately predict hydrate formation conditions for a given gas mixture, without having to do costly experimental measurements. The relative importance of the temperature and the different components in the mixture has also been investigated. Finally, the use of the new model in an integrated control dosing system for preventing hydrate formation is discussed.  相似文献   

20.
In this study,a numerical model is developed to investigate the hydrate dissociation and gas production in porous media by depressurization.A series of simulation runs are conducted to study the impacts of permeability characteristics,including permeability reduction exponent,absolute permeability,hydrate accumulation habits and hydrate saturation,sand average grain size and irreducible water saturation.The effects of the distribution of hydrate in porous media are examined by adapting conceptual models of hydrate accumulation habits into simulations to govern the evolution of permeability with hydrate decomposition,which is also compared with the conventional reservoir permeability model,i.e.Corey model.The simulations show that the hydrate dissociation rate increases with the decrease of permeability reduction exponent,hydrate saturation and the sand average grain size.Compared with the conceptual models of hydrate accumulation habits,our simulations indicate that Corey model overpredicts the gas production and the performance of hydrate coating models is superior to that of hydrate filling models in gas production,which behavior does follow by the order of capillary coating>pore coating>pore filling>capillary filling.From the analysis of t1/2,some interesting results are suggested as follows:(1) there is a "switch" value(the"switch"absolute permeability) for laboratory-scale hydrate dissociation in porous media,the absolute permeability has almost no influence on the gas production behavior when the permeability exceeds the "switch" value.In this study,the "switch" value of absolute permeability can be estimated to be between 10 and 50 md.(2) An optimum value of initial effective water saturation Sw,e exists where hydrate dissociation rate reaches the maximum and the optimum value largely coincides with the value of irreducible water saturation S wr,e.For the case of Sw,Swr,e,there are different control mechanisms dominating the process of hydrate dissociation and gas production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号