首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 351.1 nm photoelectron spectrum of 1-pyrazolide anion has been measured. The 1-pyrazolide ion is produced by hydroxide (HO(-)) deprotonation of pyrazole in a flowing afterglow ion source. The electron affinity (EA) of the 1-pyrazolyl radical has been determined to be 2.938 +/- 0.005 eV. The angular dependence of the photoelectrons indicates near-degeneracy of low-lying states of 1-pyrazolyl. The vibronic feature of the spectrum suggests significant nonadiabatic effects in these electronic states. The gas phase acidity of pyrazole has been determined using a flowing afterglow-selected ion flow tube; Delta(acid)G(298) = 346.4 +/- 0.3 kcal mol(-1) and Delta(acid)H(298) = 353.6 +/- 0.4 kcal mol(-1). The N-H bond dissociation energy (BDE) of pyrazole is derived to be D(0)(pyrazole, N-H) = 106.4 +/- 0.4 kcal mol(-1) from the EA and the acidity using a thermochemical cycle. In addition to 1-pyrazolide, the photoelectron spectrum demonstrates that HO(-) deprotonates pyrazole at the C5 position to generate a minor amount of 5-pyrazolide anion. The photoelectron spectrum of 5-pyrazolide has been successfully reproduced by a Franck-Condon (FC) simulation based on the optimized geometries and the normal modes obtained from B3LYP/6-311++G(d,p) electronic structure calculations. The EA of the 5-pyrazolyl radical is 2.104 +/- 0.005 eV. The spectrum exhibits an extensive vibrational progression for an in-plane CCN bending mode, which indicates a substantial difference in the CCN angle between the electronic ground states of 5-pyrazolide and 5-pyrazolyl. Fundamental vibrational frequencies of 890 +/- 15, 1110 +/- 35, and 1345 +/- 30 cm(-1) have been assigned for the in-plane CCN bending mode and two in-plane bond-stretching modes, respectively, of X (2)A' 5-pyrazolyl. The physical properties of the pyrazole system are compared to the isoelectronic systems, pyrrole and imidazole.  相似文献   

2.
The 351.1 nm photoelectron spectra of the N-methyl-5-pyrazolide anion and the N-methyl-5-imidazolide anion are reported. The photoelectron spectra of both isomers display extended vibrational progressions in the X2A' ground states of the corresponding radicals that are well reproduced by Franck-Condon simulations, based on the results of B3LYP/6-311++G(d,p) calculations. The electron affinities of the N-methyl-5-pyrazolyl radical and the N-methyl-5-imidazolyl radical are 2.054 +/- 0.006 eV and 1.987 +/- 0.008 eV, respectively. Broad vibronic features of the A(2)A' ' states are also observed in the spectra. The gas-phase acidities of N-methylpyrazole and N-methylimidazole are determined from measurements of proton-transfer rate constants using a flowing afterglow-selected ion flow tube instrument. The acidity of N-methylpyrazole is measured to be Delta(acid)G(298) = 376.9 +/- 0.7 kcal mol(-1) and Delta(acid)H(298) = 384.0 +/- 0.7 kcal mol(-1), whereas the acidity of N-methylimidazole is determined to be Delta(acid)G(298) = 380.2 +/- 1.0 kcal mol(-1) and Delta(acid)H(298)= 388.1 +/- 1.0 kcal mol(-1). The gas-phase acidities are combined with the electron affinities in a negative ion thermochemical cycle to determine the C5-H bond dissociation energies, D(0)(C5-H, N-methylpyrazole) = 116.4 +/- 0.7 kcal mol(-1) and D(0)(C5-H, N-methylimidazole) = 119.0 +/- 1.0 kcal mol(-1). The bond strengths reported here are consistent with previously reported bond strengths of pyrazole and imidazole; however, the error bars are significantly reduced.  相似文献   

3.
The photoelectron spectrum of the anilinide ion has been measured. The spectrum exhibits a vibrational progression of the CCC in-plane bending mode of the anilino radical in its electronic ground state. The observed fundamental frequency is 524 ± 10 cm(-1). The electron affinity (EA) of the radical is determined to be 1.607 ± 0.004 eV. The EA value is combined with the N-H bond dissociation energy of aniline in a negative ion thermochemical cycle to derive the deprotonation enthalpy of aniline at 0 K; Δ(acid)H(0)(PhHN-H) = 1535.4 ± 0.7 kJ mol(-1). Temperature corrections are made to obtain the corresponding value at 298 K and the gas-phase acidity; Δ(acid)H(298)(PhHN-H) = 1540.8 ± 1.0 kJ mol(-1) and Δ(acid)G(298)(PhHN-H) = 1509.2 ± 1.5 kJ mol(-1), respectively. The compatibility of this value in the acidity scale that is currently available is examined by utilizing the acidity of acetaldehyde as a reference.  相似文献   

4.
Methyl, methyl-d(3), and ethyl hydroperoxide anions (CH(3)OO(-), CD(3)OO(-), and CH(3)CH(2)OO(-)) have been prepared by deprotonation of their respective hydroperoxides in a stream of helium buffer gas. Photodetachment with 364 nm (3.408 eV) radiation was used to measure the adiabatic electron affinities: EA[CH(3)OO, X(2)A' '] = 1.161 +/- 0.005 eV, EA[CD(3)OO, X(2)A' '] = 1.154 +/- 0.004 eV, and EA[CH(3)CH(2)OO, X(2)A' '] = 1.186 +/- 0.004 eV. The photoelectron spectra yield values for the term energies: Delta E(X(2)A' '-A (2)A')[CH(3)OO] = 0.914 +/- 0.005 eV, Delta E(X(2)A' '-A (2)A')[CD(3)OO] = 0.913 +/- 0.004 eV, and Delta E(X(2)A' '-A (2)A')[CH(3)CH(2)OO] = 0.938 +/- 0.004 eV. A localized RO-O stretching mode was observed near 1100 cm(-1) for the ground state of all three radicals, and low-frequency R-O-O bending modes are also reported. Proton-transfer kinetics of the hydroperoxides have been measured in a tandem flowing afterglow-selected ion flow tube (FA-SIFT) to determine the gas-phase acidity of the parent hydroperoxides: Delta(acid)G(298)(CH(3)OOH) = 367.6 +/- 0.7 kcal mol(-1), Delta(acid)G(298)(CD(3)OOH) = 367.9 +/- 0.9 kcal mol(-1), and Delta(acid)G(298)(CH(3)CH(2)OOH) = 363.9 +/- 2.0 kcal mol(-1). From these acidities we have derived the enthalpies of deprotonation: Delta(acid)H(298)(CH(3)OOH) = 374.6 +/- 1.0 kcal mol(-1), Delta(acid)H(298)(CD(3)OOH) = 374.9 +/- 1.1 kcal mol(-1), and Delta(acid)H(298)(CH(3)CH(2)OOH) = 371.0 +/- 2.2 kcal mol(-1). Use of the negative-ion acidity/EA cycle provides the ROO-H bond enthalpies: DH(298)(CH(3)OO-H) = 87.8 +/- 1.0 kcal mol(-1), DH(298)(CD(3)OO-H) = 87.9 +/- 1.1 kcal mol(-1), and DH(298)(CH(3)CH(2)OO-H) = 84.8 +/- 2.2 kcal mol(-1). We review the thermochemistry of the peroxyl radicals, CH(3)OO and CH(3)CH(2)OO. Using experimental bond enthalpies, DH(298)(ROO-H), and CBS/APNO ab initio electronic structure calculations for the energies of the corresponding hydroperoxides, we derive the heats of formation of the peroxyl radicals. The "electron affinity/acidity/CBS" cycle yields Delta(f)H(298)[CH(3)OO] = 4.8 +/- 1.2 kcal mol(-1) and Delta(f)H(298)[CH(3)CH(2)OO] = -6.8 +/- 2.3 kcal mol(-1).  相似文献   

5.
A combination of experimental methods, photoelectron-imaging spectroscopy, flowing afterglow-photoelectron spectroscopy and the flowing afterglow-selected ion flow tube technique, and electronic structure calculations at the B3LYP/6-311++G(d,p) level of density functional theory (DFT) have been employed to study the mechanism of the reaction of the hydroxide ion (HO-) with 1H-1,2,3-triazole. Four different product ion species have been identified experimentally, and the DFT calculations suggest that deprotonation by HO- at all sites of the triazole takes place to yield these products. Deprotonation of 1H-1,2,3-triazole at the N1-H site gives the major product ion, the 1,2,3-triazolide ion. The 335 nm photoelectron-imaging spectrum of the ion has been measured. The electron affinity (EA) of the 1,2,3-triazolyl radical has been determined to be 3.447 +/- 0.004 eV. This EA and the gas-phase acidity of 2H-1,2,3-triazole are combined in a negative ion thermochemical cycle to determine the N-H bond dissociation energy of 2H-1,2,3-triazole to be 112.2 +/- 0.6 kcal mol-1. The 363.8 nm photoelectron spectroscopic measurements have identified the other three product ions. Deprotonation of 1H-1,2,3-triazole at the C5 position initiates fragmentation of the ring structure to yield a minor product, the ketenimine anion. Another minor product, the iminodiazomethyl anion, is generated by deprotonation of 1H-1,2,3-triazole at the C4 position, followed by N1-N2 bond fission. Formation of the other minor product, the 2H-1,2,3-triazol-4-ide ion, can be rationalized by initial deprotonation of 1H-1,2,3-triazole at the N1-H site and subsequent proton exchanges within the ion-molecule complex. The EA of the 2H-1,2,3-triazol-4-yl radical is 1.865 +/- 0.004 eV.  相似文献   

6.
We report the anion photoelectron spectra of deprotonated thymine and cytosine at 3.496 eV photodetachment energy using velocity-mapped imaging. The photoelectron spectra of both species exhibit bands resulting from detachment transitions between the anion ground state and the ground state of the neutral radical. Franck-Condon simulations identify the anion isomers that contribute to the observed photoelectron spectrum. For both thymine and cytosine, the photoelectron spectra are consistent with anions formed by removal of a proton from the N atom that normally attaches to the sugar in the nucleotide (N1). For deprotonated thymine, the photoelectron spectrum shows a band due to a ring breathing vibration excited during the photodetachment transition. The electron affinity for the dehydrogenated thymine radical is determined as 3.250 +/- 0.015 eV. For deprotonated cytosine, the photoelectron spectrum lacks any resolved structure and the electron affinity of the dehydrogenated cytosine radical is determined to be 3.037 +/- 0.015 eV. By combining the electron affinity with previously measured gas phase acidities of thymine and cytosine, we determine the bond dissociation energy for the N-H bond that is broken.  相似文献   

7.
Negative-ion photoelectron spectroscopy is applied to the PH-, PH2-, P2H-, P2H2-, and P2H3-molecular anions. Franck-Condon simulations of the photoelectron spectra are used to analyze the spectra and to identify various P2H(n)- species. The simulations employ density-functional theory calculations of molecular geometries and vibrational frequencies and normal modes, and coupled-cluster theory calculations of electron affinities. The following electron affinities are obtained: EA0(PH) = 1.027 +/- 0.006 eV, EA0(PH2) = 1.263 +/- 0.006 eV, and EA0(P2H) = 1.514 +/- 0.010 eV. A band is identified as a mixture of trans-HPPH- and cis-HPPH-. Although the trans and cis bands cannot be definitively assigned from experimental information, using theory as a guide we obtain EA0(trans-HPPH)= 1.00 +/- 0.01 eV and EA0(cis-HPPH) = 1.03 +/- 0.01 eV. A weak feature tentatively assigned to P2H3- has a vertical detachment energy of 1.74 eV. The derived gas-phase acidity of phosphine is delta(acid)G298(PH3) < or = 1509.7 +/- 2.1 kJ mo1(-1).  相似文献   

8.
Using photoelectron spectroscopy, we interrogate the cyclic furanide anion (C(4)H(3)O(-)) to determine the electron affinity and vibrational structure of the neutral furanyl radical and the term energy of its first excited electronic state. We present the 364-nm photoelectron spectrum of the furanide anion and measure the electron affinity of the X?(2)A(') ground state of the α-furanyl radical to be 1.853(4) eV. A Franck-Condon analysis of the well-resolved spectrum allows determination of the harmonic frequencies of three of the most active vibrational modes upon X?(2)A(') ← X?(1)A(') photodetachment: 855(25), 1064(25), and 1307(40) cm(-1). These modes are ring deformation vibrations, consistent with the intuitive picture of furanide anion photodetachment, where the excess electron is strongly localized on the α-carbon atom. In addition, the A?(2)A(') excited state of the α-furanyl radical is observed 0.68(7) eV higher in energy than the X?(2)A(') ground state. Through a thermochemical cycle involving the known gas-phase acidity of furan, the electron affinity of the furanyl radical yields the first experimental determination of the C-H(α) bond dissociation energy of furan (DH(298)(C(4)H(3)O-H(α))): 119.8(2) kcal mol(-1).  相似文献   

9.
We report photoelectron images and spectra of deprotonated thiophene, C(4)H(3)S(-), obtained at 266, 355, and 390 nm. Photodetachment of the α isomer of the anion is observed, and the photoelectron bands are assigned to the ground X(2)A(') (σ) and excited A(2)A(") and B(2)A(") (π) states of the thiophenyl radical. The photoelectron angular distributions are consistent with photodetachment from the respective in-plane (σ) and out-of-plane (π(?)) orbitals. The adiabatic electron affinity of α-(●)C(4)H(3)S is determined to be 2.05 ± 0.08 eV, while the B(2)A(") term energy is estimated at 1.6 ± 0.1 eV. Using the measured electron affinity and the electron affinity/acidity thermodynamic cycle, the C-H(α) bond dissociation energy of thiophene is calculated as DH(298)(H(α)-C(4)H(3)S) = 115 ± 3 kcal/mol. Comparison of this value to other, previously reported C-H bond dissociation energies, in particular for benzene and furan, sheds light of the relative thermodynamic stabilities of the corresponding radicals. In addition, the 266 nm photoelectron image and spectrum of the furanide anion, C(4)H(3)O(-), reveal a previously unobserved vibrationally resolved band, assigned to the B(2)A(") excited state of the furanyl radical, (●)C(4)H(3)O. The observed band origin corresponds to a 2.53 ± 0.01 eV B(2)A(") term energy, while the resolved vibrational progression (853 ± 42 cm(-1)) is assigned to an in-plane ring mode of α-(●)C(4)H(3)O (B(2)A(")).  相似文献   

10.
The 351.1 nm photoelectron spectrum of the vinyldiazomethyl anion has been measured. The ion is generated through the reaction of the allyl anion with N(2)O in helium buffer gas in a flowing afterglow source. The spectrum exhibits the vibronic structure of the vinyldiazomethyl radical in its electronic ground state as well as in the first excited state. Electronic structure calculations have been performed for these molecules at the B3LYP/6-311++G(d,p) level of theory. A Franck-Condon simulation of the X (2)A' state portion of the spectrum has been carried out using the geometries and normal modes of the anion and radical obtained from these calculations. The simulation unambiguously shows that the ions predominantly have an E conformation. The electron affinity (EA) of the radical has been determined to be 1.864 +/- 0.007 eV. Vibrational frequencies of 185 +/- 10 and 415 +/- 20 cm(-1) observed in the spectrum have been identified as in-plane CCN bending and CCC bending modes, respectively, for the X (2)A' state. The spectrum for the A (2)A' state is broad and structureless, reflecting large geometry differences between the anion and the radical, particularly in the CCN angle, as well as vibronic coupling with the X (2)A' state. The DFT calculations have also been used to better understand the mechanism of the allyl anion reaction with N(2)O. Collision-induced dissociation of the structural isomer of the vinyldiazomethyl anion, the 1-pyrazolide ion, has been examined, and energetics of the structural isomers is discussed.  相似文献   

11.
[reaction: see text] The adiabatic electron affinity (EA(ad)) of the CH(3)-C[triple bond]C(*) radical [experiment = 2.718 +/- 0.008 eV] and the gas-phase basicity of the CH(3)-C[triple bond]C:(-) anion [experiment = 373.4 +/- 2 kcal/mol] have been compared with those of their fluorine derivatives. The latter are studied using theoretical methods. It is found that there are large effects on the electron affinities and gas-phase basicities as the H atoms of the alpha-CH(3) group in the propynyl system are substituted by F atoms. The predicted electron affinities are 3.31 eV (FCH(2)-C[triple bond]C(*)), 3.86 eV (F(2)CH-C[triple bond]C(*)), and 4.24 eV (F(3)C-C[triple bond]C(*)), and the predicted gas-phase basicities of the fluorocarbanion derivatives are 366.4 kcal/mol (FCH(2)-C[triple bond]C:(-)), 356.6 kcal/mol (F(2)CH-C[triple bond]C:(-)), and 349.8 kcal/mol (F(3)C-C[triple bond]C:(-)). It is concluded that the electron affinities of fluoropropynyl radicals increase and the gas-phase basicities decrease as F atoms sequentially replace H atoms of the alpha-CH(3) in the propynyl system. The propargyl radicals, lower in energy than the isomeric propynyl radicals, are also examined and their electron affinities are predicted to be 0.98 eV ((*)CH(2)-C[triple bond]CH), 1.18 eV ((*)CFH-C[triple bond]CH), 1.32 eV ((*)CF(2)-C[triple bond] CH), 1.71 eV ((*)CH(2)-C[triple bond]CF), 2.05 eV ((*)CFH-C[triple bond]CF), and 2.23 eV ((*)CF(2)-C[triple bond]CF).  相似文献   

12.
The photochromic behavior of the imidazole dimers can be attributable to the photoinduced homolytic cleavage of the C-N bond between the two imidazole rings. On the other hand, although the simultaneous formation of the imidazolyl radical and imidazole anion by the one-electron reduction of an imidazole dimer was reported, no definitive evidence for this electrochemical reaction has been demonstrated. We report the first direct evidence for the electrochemical generation of the imidazolyl radical from the radical anion of the imidazole dimer by conducting the UV-vis-NIR spectroelectrochemical analysis of the [2.2]paracyclophane-bridged imidazole dimer.  相似文献   

13.
Decarboxylation of 1-bicyclo[1.1.1]pentanecarboxylate anion does not afford 1-bicyclo[1.1.1]pentyl anion as previously assumed. Instead, a ring-opening isomerization which ultimately leads to 1,4-pentadien-2-yl anion takes place. A 1-bicyclo[1.1.1]pentyl anion was prepared nevertheless via the fluoride-induced desilylation of 1-tert-butyl-3-(trimethylsilyl)bicyclo[1.1.1]pentane. The electron affinity of 3-tert-butyl-1-bicyclo[1.1.1]pentyl radical (14.8 plus minus 3.2 kcal/mol) was measured by bracketing, and the acidity of 1-tert-butylbicyclo[1.1.1]pentane (408.5 +/- 0.9) was determined by the DePuy kinetic method. These values are well-reproduced by G2 and G3 calculations and can be combined in a thermodynamic cycle to provide a bridgehead C-H bond dissociation energy (BDE) of 109.7 +/- 3.3 kcal/mol for 1-tert-butylbicyclo[1.1.1]pentane. This bond energy is the strongest tertiary C-H bond to be measured, is much larger than the corresponding bond in isobutane (96.5 +/- 0.4 kcal/mol), and is more typical of an alkene or aromatic compound. The large BDE can be explained in terms of hybridization.  相似文献   

14.
The C - H bond dissociation energies for naphthalene were determined using a negative ion thermochemical cycle involving the gas-phase acidity (Delta H (acid)) and electron affinity (EA) for both the alpha- and beta-positions. The gas-phase acidity of the naphthalene alpha- and beta-positions and the EAs of the alpha- and beta-naphthyl radicals were measured in the gas phase in a flowing after glow-triple quadrupole apparatus. A variation of the Cooks kinetic method was used to measure the EAs of the naphthyl radicals by collision-induced dissociation of the corresponding alpha- and beta-naphthylsulfinate adducts formed by reactions in the flow tube portion of the instrument. Calibration references included both pi and sigma radicals, and full entropy analysis was performed over a series of calibration curves measured at collision energies ranging from 3.5 to 8 eV (center-of-mass). The measured EAs are 33.0 +/- 1.4 and 31.4 +/- 1.0 kcal mol(-1) (1 kcal = 4.184 kJ) for the alpha- and beta-naphthyl radicals, respectively. The gas-phase acidities for naphthalene were measured by the DePuy silane cleavage method, which utilizes the relative abundances of aryldimethylsiloxides and trimethylsiloxide that result from competitive cleavages from a proposed penta coordinate hydroxysiliconate intermediate. The measured acidities are 394.0 +/- 5.0 and 397.6 +/- 4.8 kcal mol(-1) for the alpha- and beta- positions, respectively. The C - H bond dissociation energies calculated from the thermochemical cycle are 113.4 +/- 5.2 and 115.4 +/- 4.9 kcal mol(-1) for the alpha- and beta-positions, respectively. These energies are, to within experimental error, indistinguishable and are approximately the same as the first bond dissociation energy for benzene.  相似文献   

15.
The thermochemical properties of benzoylnitrene radical anion, C6H5CON-, were determined by using a combination of energy-resolved collision-induced dissociation (CID) and proton affinity bracketing. Benzoylnitrene radical anion dissociates upon CID to give NCO- and phenyl radical with a dissociation enthalpy of 0.85 +/- 0.09 eV, which is used to derive an enthalpy of formation of 33 +/- 9 kJ/mol for the nitrene radical anion. Bracketing studies with the anion indicate a proton affinity of 1453 +/- 10 kJ/mol, indicating that the acidity of benzamidyl radical, C6H5CONH, is between those of benzamide and benzoic acid. Combining the measurements gives an enthalpy of formation for benzamidyl radical of 110 +/- 14 kJ/mol and a homolytic N-H bond dissociation energy in benzamide of 429 +/- 14 kJ/mol. Additional thermochemical properties obtained include the electron affinity of benzamidyl radical, the hydrogen atom affinity of benzoylnitrene radical anion, and the oxygen anion affinity of benzonitrile.  相似文献   

16.
Through the use of the Active Thermochemical Tables approach, the best currently available enthalpy of formation of HO2 has been obtained as delta(f)H(o)298 (HO2) = 2.94 +/- 0.06 kcal mol(-1) (3.64 +/- 0.06 kcal mol(-1) at 0 K). The related enthalpy of formation of the positive ion, HO2+, within the stationary electron convention is delta(f)H(o)298 (HO2+) = 264.71 +/- 0.14 kcal mol(-1) (265.41 +/- 0.14 kcal mol(-1) at 0 K), while that for the negative ion, HO2- (within the same convention), is delta(f)H(o)298 (HO2-) = -21.86 +/- 0.11 kcal mol(-1) (-21.22 +/- 0.11 kcal mol(-1) at 0 K). The related proton affinity of molecular oxygen is PA298(O2) = 100.98 +/- 0.14 kcal mol(-1) (99.81 +/- 0.14 kcal mol(-1) at 0 K), while the gas-phase acidity of H2O2 is delta(acid)G(o)298 (H2O2) = 369.08 +/- 0.11 kcal mol(-1), with the corresponding enthalpy of deprotonation of H2O2 of delta(acid)H(o)298 (H2O2) = 376.27 +/- 0.11 kcal mol(-1) (375.02 +/- 0.11 kcal mol(-1) at 0 K). In addition, a further improved enthalpy of formation of OH is briefly outlined, delta(f)H(o)298 (OH) = 8.93 +/- 0.03 kcal mol(-1) (8.87 +/- 0.03 kcal mol(-1) at 0 K), together with new and more accurate enthalpies of formation of NO, delta(f)H(o)298 (NO) = 21.76 +/- 0.02 kcal mol(-1) (21.64 +/- 0.02 kcal mol(-1) at 0 K) and NO2, delta(f)H(o)298 (NO2) = 8.12 +/- 0.02 kcal mol(-1) (8.79 +/- 0.02 kcal mol(-1) at 0 K), as well as H(2)O(2) in the gas phase, delta(f)H(o)298 (H2O2) = -32.45 +/- 0.04 kcal mol(-1) (-31.01 +/- 0.04 kcal mol(-1) at 0 K). The new thermochemistry of HO2, together with other arguments given in the present work, suggests that the previous equilibrium constant for NO + HO2 --> OH + NO2 was underestimated by a factor of approximately 2, implicating that the OH + NO2 rate was overestimated by the same factor. This point is experimentally explored in the companion paper of Srinivasan et al. (next paper in this issue).  相似文献   

17.
New measurements have been made of rate constants for electron attachment to c-C(4)F(8) (octafluorocyclobutane) and thermal electron detachment from the parent anion, c-C(4)F(8) (-), over the temperature range 298-400 K in 133 Pa of He gas in a flowing-afterglow Langmuir-probe apparatus. From these data the electron affinity for c-C(4)F(8) was determined, EA(c-C(4)F(8))=0.63+/-0.05 eV. The motivation was to resolve a discrepancy between our earlier EA estimate and a higher value (EA=1.05+/-0.10 eV) reported from a recent experiment of Hiraoka et al. [J. Chem. Phys. 116, 7574 (2002)]. The electron attachment rate constant is 9.3+/-3.0x10(-9) cm(3) s(-1) at 298 K. The electron detachment rate constant is negligible at room temperature but climbs to 1945+/-680 s(-1) at 400 K. G3(MP2) calculations were carried out for the neutral (D(2d), (1)A(1)) and anion (D(4h), (2)A(2u)) and yielded EA(c-C(4)F(8) (-))=0.595 eV. Bond energies were also calculated for loss of F from c-C(4)F(8) and loss of F or F(-) from c-C(4)F(8) (-). From these, dissociative electron attachment is found to be endothermic by at least 1.55 eV.  相似文献   

18.
Threshold photoelectron-photoion coincidence spectroscopy has been used to investigate the dissociation kinetics of the cyclopentadienyl manganese tricarbonyl ion, CpMn(CO)(3)(+). The ionization energy of CpMn(CO)(3) was measured from the threshold photoelectron spectrum to be 7.69 +/- 0.02 eV. The dissociation of the CpMn(CO)(3)(+) ion proceeds by the sequential loss of three CO molecules. The first and third CO loss reactions were observed to be slow (lifetimes in the microsecond range). By simulating the resulting asymmetric time-of-flight peak shapes and breakdown diagram, 0 K onsets for three product ions were determined to be 8.80 +/- 0.04, 9.43 +/- 0.04, and 10.51 +/- 0.06 eV, respectively. Combined with the adiabatic ionization energy, the three successive Mn-CO bond energies in the CpMn(CO)(3)(+) were found to be alternating with values of 1.11 +/- 0.04, 0.63 +/- 0.04, and 1.08 +/- 0.06 eV, respectively. Using a scaled theoretical Cp-Mn(+) bond energy of 3.10 +/- 0.10 eV and the combined results from theory and experiment, the 298 K gas-phase heat of formation of CpMn(CO)(3) is suggested to be -419 +/- 15 kJ/mol. Based on this value, the 298 K heats of formation of CpMn(CO)(3)(+), CpMn(CO)(2)(+), CpMnCO(+), and CpMn(+) are 325 +/- 15, 546 +/- 15, 719 +/- 15, and 938 +/- 15 kJ/mol, respectively. By scaling theoretical calculated neutral bond energies with the experimental information derived in this study, the successive Mn-CO bond energies were estimated to be 1.88, 1.10, and 1.03 eV, respectively, while the Cp-Mn bond energy was found to be 2.16 eV. Comparison between the quantum chemical calculations and experimental values shows that the loss of CO groups follows the lowest energy adiabatic path, in which electronic spin on the metal center is not conserved.  相似文献   

19.
The gas-phase acidity of 3,3-dimethylcyclopropene (1) has been measured by bracketing and equilibrium techniques. Consistent with simple hybridization arguments, our value (deltaH degrees (acid) = 382.7 +/- 1.3 kcal mol(-)(1)) is indistinguishable from that for methylacetylene (i.e., deltadeltaH degrees (acid)(1 - CH(3)Ctbd1;CH) = 1.6 +/- 2.5 kcal mol(-)(1)). The electron affinity of 3,3-dimethylcyclopropenyl radical (1r) was also determined (EA = 37.6 +/- 3.5 kcal mol(-)(1)), and these quantities were combined in a thermodynamic cycle to afford the homolytic C-H bond dissociation energy. To our surprise, the latter quantity (107 +/- 4 kcal mol(-)(1)) is the same as that for methane, which cannot be explained in terms of the s-character in the C-H bonds. An orbital explanation (delocalization) is proposed to account for the extra stability of 1r. All of the results are supplemented with G3 and B3LYP computations, and both approaches are in good accord with the experimental values. We also note that for simple hydrocarbons which give localized carbanions upon deprotonation there is an apparent linear correlation between any two of the following three quantities: deltaH degrees (acid), BDE, and EA. This observation could be of considerable value in many diverse areas of chemistry.  相似文献   

20.
Negative-ion photoelectron spectroscopy of ICN(-) (X??(2)Σ(+)) reveals transitions to the ground electronic state (X??(1)Σ(+)) of ICN as well as the first five excited states ((3)Π(2), (3)Π(1), Π(0(-) ) (3), Π(0(+) ) (3), and (1)Π(1)) that make up the ICN A continuum. By starting from the equilibrium geometry of the anion, photoelectron spectroscopy characterizes the electronic structure of ICN at an elongated I-C bond length of 2.65 A?. Because of this bond elongation, the lowest three excited states of ICN ((3)Π(2), (3)Π(1), and Π(0(-) ) (3)) are resolved for the first time in the photoelectron spectrum. In addition, the spectrum has a structured peak that arises from the frequently studied conical intersection between the Π(0(+) ) (3) and (1)Π(1) states. The assignment of the spectrum is aided by MR-SO-CISD calculations of the potential energy surfaces for the anion and neutral ICN electronic states, along with calculations of the vibrational levels supported by these states. Through thermochemical cycles involving spectrally narrow transitions to the excited states of ICN, we determine the electron affinity, EA(ICN), to be 1.34(5) (+0.04∕-0.02) eV and the anion dissociation energy, D(0)(X??(2)Σ(+) I-CN(-)), to be 0.83 (+0.04/-0.02) eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号