首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Excess enthalpies of sixteen binary mixtures between one each of methyl methylthiomethyl sulfoxide (MMTSO) and dimethyl sulfoxide (DMSO) and one of ketone {CH3CO(CH2)nCH3, n=0 to 6 and CH3COC6H5} have been determined at 298.15 K. All the mixtures showed positive excess enthalpies over the whole range of mole fractions. Excess enthalpies of ketone+MMTSO or DMSO increased with increasing the number of methylene radicals in the methyl alkyl ketone molecules. Excess enthalpies of MMTSO+ketone are smaller than those of DMSO+ketone for the same ketone mixtures. The limiting excess partial molar enthalpies of the ketone, H 1 E,∞, in all the mixtures with MMTSO were smaller than those of DMSO. Linear relationships were obtained between limiting excess partial molar enthalpies and the number of methylene groups except 2-propanone.  相似文献   

2.
Excess enthalpies of six binary mixtures of CH3 OD+CH3 OH, CH3 OD+CD3 OD, CD3 OD+CH3 OH, C2 D5 OD+C2 H5 OH, C2 D5 OD+C2 H5 OD, C2 H5 OD+C2 H5 OH have been determined over the whole range of mole fractions at 298.15 K in order to know the isotopic effect on hydrogen-bonding accurately, although there are many reports on the differences in the strength of hydrogen-bonding between OH and OD. All excess enthalpies measured are very small and endothermic. The mixtures of CH3 OD+ CH3 OH, and C2 D5 OD+C2 H5 OH showed the largest excess enthalpies among each methanol and ethanol mixtures. The difference of intermolecular interaction between OH and OD in methanol and ethanol was almost same value of (1.82±0.04) J mol-1 Excess enthalpies of 1,4-dimethylbenzene+1,3-dimethylbenzene and 1,4-dimethylbenzene+1,2-methylbenzene were measured by three different principle calorimeters at 298.15 K in order to know the precision of calorimetry for a small enthalpy change. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Excess molar volumes, VE, isentropic compressibility deviations, ΔκS, and excess molar enthalpies, HE, for the binary mixtures 2-methyl-tetrahydrofuran with 1-chlorobutane, 2-chlorobutane, 2-methyl-1-chloropropane and 2-methyl-2-chloropropane have been determined at temperatures 298.15 and 313.15 K, excess molar enthalpies were only measured at 298.15 K. We have applied the Prigogine-Flory-Patterson (PFP) theory to these mixtures at 298.15 K.  相似文献   

4.
Excess enthalpies of binary mixtures between each of alkane-1-amines {CnH2n+1NH2, n=3-8} and methyl methylthiomethyl sulfoxide (MMTSO) or dimethyl sulfoxide (DMSO) have been determined at 298.15 K. All mixtures showed positive enthalpy changes over the whole range of mole fractions.The limiting excess partial molar enthalpies of the aliphatic amines, H1E,∞, of all the mixtures with MMTSO or DMSO studied were smaller than those of MMTSO or DMSO, H2E,∞, respectively. Linear relations are obtained between limiting excess partial molar enthalpies and number of methylene groups.  相似文献   

5.
Excess molar enthalpies of binary mixtures for tributyl phosphate (TBP)+methanol/ethanol were measured with a TAM air Isothermal calorimeter at 298.15 K and ambient. The results for xTBP+(1–x)CH3OH are negative in the whole range of composition, while the values for xTBP+(1–x)C2H5OH change from positive values at low x to small negative values at high x. The experimental results have been correlated with the Redlich–Kister polynomial. IR spectra of the mixtures were measured to investigate the effect of hydrogen bonding in the mixture.  相似文献   

6.
《Fluid Phase Equilibria》1996,126(2):233-239
Excess molar volumes at 298.15 K and atmospheric pressure were measured for {x1 CH3CO2(CH2)3CH3 + x2 C10H22 + (1 − x1x2) Cl(CH2)3CH3} and the corresponding binary mixtures, with an Anton Paar densimeter. All the experimental values were compared with the results obtained by different prediction methods.  相似文献   

7.
Excess molar enthalpies HmE and excess molar volumes VmE have been measured for xC3H7NO2 + (1 ? x)c-C6H12 at 298.15 and 318.15 K; +(1 ? x)CCl4 at 298.15 and 318.15 K; +(1 ? x)C6H6 at 298.15 and 318.15 K; +(1 ? x)C6H14 (VmE only) at 298.15 K; +(1 ? x)p-C6H4(CH3)2 at 298.15 K; and for xCH3CH(NO2)CH3 + (1 ? x)c-C6H12 at 298.15 and 318.15 K; +(1 ? x)CCl4 at 298.15 and 318.15 K; +(1 ? x)C6H6 at 298.15 K; +(1 ? x)C6H14 at 298.15 K; +(1 ? x)(CH3)2CHCH(CH3)2 for HmE at 318.15 K and for VmE at 298.15 K; and +(1 ? x)C16H34 at 298.15 K. The HmE′s were determined with an isothermal dilution calorimeter and the VmE′s with a continuous-dilution dilatometer. Particular attention was paid to the region dilute in nitroalkane. In general HmE is large and positive for (a nitropropane + an alkane), less positive for (a nitropropane + tetrachloromethane), and small for (a nitropropane + benzene) and for (a nitropropane + 1,4-dimethylbenzene). The mixture with hexadecane shows phase separation. VmE is large and positive for (1-nitropropane + cyclohexane), less positive for (1-nitropropane + hexane), and S-shaped for (1-nitropropane + tetrachloromethane) with negative values in the 1-nitropropane-rich region. For (1-nitropropane + benzene) and for (1-nitropropane + 1,4-dimethylbenzene) VmE is negative. For mixtures with 2-nitropropane the results are similar except that for benzene VmE is S-shaped with positive values in the 2-nitropropane-rich region.  相似文献   

8.
Microcalorimetric measurements of excess enthalpies at the temperature T = 298.15 K are reported for the binary mixture, (x1C6H12 + x2C4H8O) and the two ternary mixtures {x1C6H12 + x2(C4H8O or C5H10O) + x3(C5H12O)}. Smooth representations of the results are presented and used to construct constant excess molar enthalpy contours on Roozeboom diagrams. It is shown that good estimates of the ternary enthalpies can be obtained from the Liebermann and Fried model, using only the physical properties of the components and their binary mixtures.  相似文献   

9.
The molar excess enthalpies measured for binary mixtures of 2-, 3-, 4-picoline +n-alkane (C6H14-C10H22) at 298.15 K have been compared with the Prigogine-Flory-Patterson theory and the Extended Real Associated Solution model estimations.
Zusammenfassung Die bei 298.15 K gemessenen molaren Zusatzenthalpien binärer Mischungen aus 2-,3-,4-Picolin und einemn-Alkan (C6H14-C10H22) wurden mit den nach der Prigonine-Flory-Patterson-Theorie und den nach dem erweiterten Modell real assoziierter Lösungen (ERAS) berechneten Weiten verglichen.
  相似文献   

10.
Molar excess enthalpies H E at 298.15 K and atmospheric pressure were determined for 12 binary liquid mixtures, 1-fluoropentane, 1-fluorohexane, or 1-fluorononane + a non-polar solvent (hexane, cyclohexane, benzene, or tetrachloromethane) and were interpreted by the DISQUAC group contribution model. 1-Fluoroalkane + n-alkane mixtures are characterized by two types of groups or contact surfaces, fluorine (F) and alkane (CH3, CH2), the remaining mixtures by the additional contact surfaces of the solvents (C6H12 C6H6, or CCl4). The interchange energies, entirely dispersive, of the alkane-solvent contacts were determined independently from the study of solvent-alkane mixtures. The dispersive F-alkane parameters were assumed to equal the parameters of perfluoroalkanes + n-alkanes. The shape of the H E curves of 1-fluorolkane + polarizable solvent (C6H6, CCl4) mixtures are best reproduced by the model when the quasi-chemical F-solvent parameters are assumed to equal zero. The quasi-chemical F-alkane (the same for n-alkanes and cyclohexane) and the dispersive F-solvent parameters were estimated in this work. The 1-fluoroalkane solutions in C6H6 or CCl4 exhibit the characteristic features of polar solute + polarizable solvent mixtures, viz., the deviations from the ideality are less positive than in alkanes and the experimental H E curves are strongly asymmetrical.  相似文献   

11.
《Fluid Phase Equilibria》1999,166(2):245-258
Excess molar volumes VmE and viscosities η have been measured as a function of composition at atmospheric pressure and 298.15 K for nine {an alkoxyethanol+dimethyl carbonate (C3H6O3), diethyl carbonate (C5H10O3), or propylene carbonate (C4H6O3)} mixtures. The alkoxyethanols were 2-methoxyethanol (CH3OCH2CH2OH), 2-(2-methoxyethoxy)ethanol {CH3(OCH2CH2)2OH}, and 2-{2-(2-methoxyethoxy)ethoxy}ethanol {CH3(OCH2CH2)3OH}. The VmE for each of the carbonate mixtures studied decrease in magnitude as the polar head group of the alkoxyethanol increases. From the experimental results, deviation in the viscosity (Δlnη) have been calculated. The experimental results have been correlated using the Redlich–Kister equation to estimate the coefficients and standard errors. The experimental and calculated quantities are used to discuss the mixing behaviour of the components.  相似文献   

12.
Calorimetric measurements of molar excess enthalpies, HE, at 298.15 K, of mixtures containing aromatic aldehydes of general formula C6H5(CH2)mCHO (with m = 0, 1 and 2) + n-hexane, n-heptane or benzene are reported, together with the values of HE at equimolar composition compared with the corresponding values of HE for the aromatic ketones in the same solvents. The experimental results clearly indicate that the intermolecular interactions between the carbonyl groups (CHO) are influenced by the intramolecular interactions between the carbonyl and phenyl groups, particularly for the mixtures containing benzaldehyde.  相似文献   

13.
Excess molar enthalpies, measured at 298.15 K in a flow microcalorimeter, are reported for the five binary systems formed by mixing n-octane with n-hexane, 2-methylpentane, 3-methylpentane, 2,2-dimethylbutane and 2,3-dimethylbutane. The results for equimolar mixtures, together with similar data for other n-alkane + hexane isomer mixtures, are correlated in terms of the acentric factors of the n-alkanes.  相似文献   

14.
Excess molar enthalpies for two ternary mixtures of {x 1 tributylphosphate (TBP) + x 2 water + x 3 methanol/ethanol} were measured at T = 298.15 K and atmospheric pressure using a TAM Air isothermal calorimeter, by mixing methanol or ethanol with binary mixtures of (water + TBP). Excess enthalpies for initial binary mixtures of (water + TBP) were also measured under the same conditions, which showed phase separation at low molar fraction of TBP. Experimental results of the ternary mixtures were expressed with constant excess molar enthalpy contours on Roozeboon diagrams.  相似文献   

15.
Microcalorimetric measurements of excess enthalpies at the temperature T = 298.15 K are reported for the two ternary mixtures {x1(C4H8O or C5H10O) + x2C5H12O + x3C8H18}. Smooth representations of the results are presented and used to construct constant excess molar enthalpy contours on Roozeboom diagrams. It is shown that good estimates of the ternary enthalpies can be obtained from the Liebermann and Fried model, using only the physical properties of the components and their binary mixtures.  相似文献   

16.
Using an on-line solution-reaction isoperibol calorimeter, the standard molar enthalpies of reaction for the general thermochemical reaction: LnCl3·6H2O(s) + 2C9H7NO(s) + CH3COONa(s) = Ln(C9H6NO)2(C2H3O2)(s) + NaCl(s) + 2HCl(g) + 6H2O(l) (Ln: Nd, Sm), were determined at T=298.15 K, as  kJ mol−l, respectively. From the mentioned standard molar enthalpies of reaction and other auxiliary thermodynamic quantities, the standard molar enthalpies of formation of Ln(C9H6NO)2(C2H3O2)(s) (Ln: Nd, Sm), at T=298.15 K, have been derived to be: −(1494.7±3.3) and −(1501.5±3.4) kJ mol−l, respectively.  相似文献   

17.
制备了Pr、Yb两种希土元素异硫氰酸(?)与苄胺的固体配合物.并对其进行了组成分析、红外光谱分析、X射线衍射物相分析和热重分析.测量了298.15K时两种固体配合物RE(NCS)_3·4C_6H_5CH_2NH_2在HCl水溶液中的反应热和相应的两种希土元素异硫氰酸盐水合物RE(NCS)_3·n_1H_2O(RE为Pr时,n_1=7;RE为Yb时,n_1=6)在C_6H_5CH_2NH_2-HCl-H_2O溶液中的积分溶解热以及苄胺C_6H_5CH_2NH_2在HCl水溶液中的反应热.藉助本文所设计的热化学循环,求得了这两种配合物的标准生成焓,还计算了它们的晶格能.  相似文献   

18.
制备了Pr、Yb两种希土元素异硫氰酸盐与苄胺的固体配合物.并对其进行了组成分析、红外光谱分析、X射线衍射物相分析和热重分析.测量了298.15K时两种固体配合物RE(NCS)3·4C6H5CH2NH2在HCl水溶液中的反应热和相应的两种希土元素异硫氰酸盐水合物RE(NCS)3·n1H2O(RE为Pr时,n1=7;RE为Yb时,n1=6)在C6H5CH2NH2-HCl-H2O溶液中的积分溶解热以及苄胺C6H5CH2NH2在HCl水溶液中的反应热.藉助本文所设计的热化学循环,求得了这两种配合物的标准生成焓,还计算了它们的晶格能.  相似文献   

19.
《Fluid Phase Equilibria》2004,216(2):293-299
Excess molar enthalpies, measured at 298.15 K in a flow microcalorimeter, are reported for the ternary mixtures (tetrahydrofuran + diisopropyl ether + n-heptane) and (tetrahydrofuran + 2-methyltetrahydrofuran + n-heptane). Smooth representations of the results are described and used to construct constant excess molar enthalpy contours on Roozeboom diagrams. The latter are compared with diagrams obtained when the model of Liebermann and Fried is used to estimate the excess enthalpies of the ternary mixtures from the physical properties of the components and their binary mixtures.  相似文献   

20.
A novel solid ternary complex, [Nd(C6H4NO2)2·C9H6NO·2H2O], was synthesized in a water bath (333.15 K) by three kinds of reagents: neodymium chloride, vitamin B3 (C6H5NO2), and 8-hydroxylquinoline (C9H7NO). Its composition and structure were characterized by elemental analysis, IR spectra, UV spectra, molar conductance, and thermogravimetric analysis. During the process of coordination, C6H5NO2 was bidentate-coordinated with Nd3+ in the form of an acidic group by removing the proton; hydroxyl oxygen atom and heterocyclic nitrogen atom of C9H7NO formed a chelate ring. Particularly, in this article, a thermochemical cycle in the calorimetric solvent (V HCl:V DMF:V EtOH = 3:1:1) was designed on the basis of Hess’s law. At 298.15 K, the dissolution enthalpies of the reactants and products were determined by a advanced solution–reaction isoperibol microcalorimeter, respectively. According to the above results and relevant literature data, the standard molar enthalpy of formation of [Nd(C6H4NO2)2·C9H6NO·2H2O], was estimated to be $ \Updelta_{f} H_{m}^{\Uptheta} $ [[Nd(C6H4NO2)2·C9H6NO·2H2O(s)], 298.15 K] = ?(2,129.1 ± 2.5) kJ mol?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号