首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, the molar enthalpies of formation of the ionic liquids [C2MIM][NO3] and [C4MIM][NO3] were measured by means of combustion calorimetry. The molar enthalpy of fusion of [C2MIM][NO3] was measured using differential scanning calorimetry. Ab initio calculations of the enthalpy of formation in the gaseous phase have been performed for the ionic species using the G3MP2 theory. We have used a combination of traditional combustion calorimetry with modern high-level ab initio calculations in order to obtain the molar enthalpies of vaporization of a series of the ionic liquids under study.  相似文献   

2.
The chemical equilibrium of mutual interconversions of tert-butylbenzenes was studied in the temperature range 286 to 423 K using chloroaluminate ionic liquids as a catalyst. Enthalpies of five reactions of isomerization and transalkylation of tert-butylbenzenes were obtained from temperature dependences of the corresponding equilibrium constants in the liquid phase. Molar enthalpies of vaporization of methyl-tert-butylbenzenes and 1,4-di tert-butylbenzene were obtained by the transpiration method and were used for a recalculation of enthalpies of reactions and equilibrium constants into the gaseous phase. Using these experimental results, ab initio methods (B3LYP and G3MP2) have been tested for prediction thermodynamic functions of the five reactions under study successfully. Thermochemical investigations of tert-butylbenzenes available in the literature combined with experimental results have helped to resolve contradictions in the available thermochemical data for tert-butylbenzene and to recommend consistent and reliable enthalpies of formation for this compound in the liquid and the gaseous state.  相似文献   

3.
The quantification of hydrogen bonding and dispersion energies from vaporization enthalpies is a great challenge. Dissecting interaction energies is particularly difficult for ionic liquids (ILs), for which the composition of the different types of interactions is known neither for the liquid nor for the gas phase. In this study, we demonstrate the existence of ion pairs in the gas phase and dissect the interaction energies exclusively from measured vaporization enthalpies of different alkylated protic ILs (PILs) and aprotic ILs (AILs) and the molecular analogues of their cations. We demonstrate that the evaporated ion pairs are characterized by H‐bond‐enhanced Coulomb interaction. The overall interaction energy for the ILs in the bulk phase is composed of Coulomb interaction (76 kJ mol?1), hydrogen bonding (38 kJ mol?1), and minor dispersion interaction (10 kJ mol?1). Thus, hydrogen bonding prominently contributes to the overall interaction energy of PILs, which is reflected in the properties of this class of liquids.  相似文献   

4.
Ionic liquids are attracting growing interest as alternatives to conventional molecular solvents. Experimental values of vapor pressure, enthalpy of vaporization, and enthalpy of formation of ionic liquids are the key thermodynamic quantities, which are required for the validation and development of the molecular modeling and ab initio methods toward this new class of solvents. In this work, the molar enthalpy of formation of the liquid 1-butyl-3-methylimidazolium dicyanamide, 206.2 +/- 2.5 kJ.mol-1, was measured by means of combustion calorimetry. The molar enthalpy of vaporization of 1-butyl-3-methylimidazolium dicyanamide, 157.2 +/- 1.1 kJ.mol-1, was obtained from the temperature dependence of the vapor pressure measured using the transpiration method. The latter method has been checked with measurements of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, where data are available from the effusion technique. The first experimental determination of the gaseous enthalpy of formation of the ionic liquid 1-butyl-3-methylimidazolium dicyanamide, 363.4 +/- 2.7 kJ.mol-1, from thermochemical measurements (combustion and transpiration) is presented. Ab initio calculations of the enthalpy of formation in the gaseous phase have been performed for 1-butyl-3-methylimidazolium dicyanamide using the G3MP2 theory. Excellent agreement with experimental results has been observed. The method developed opens a new way to obtain thermodynamic properties of ionic liquids which have not been available so far.  相似文献   

5.
Ionic liquids (ILs) are recognized as an environmentally friendly alternative to replacing volatile molecular solvents. Knowledge of vaporization thermodynamics is crucial for practical applications. The vaporization thermodynamics of five ionic liquids containing a pyridinium cation and the [NTf2] anion were studied using a quartz crystal microbalance. Vapor pressure-temperature dependences were used to derive the enthalpies of vaporization of these ionic liquids. Vaporization enthalpies of the pyridinium-based ionic liquids available in the literature were collected and uniformly adjusted to the reference temperature T = 298.15 K. The consistent sets of evaluated vaporization enthalpies were used to develop the “centerpiece”-based group-additivity method for predicting enthalpies of vaporization of ionic compounds. The general transferability of the contributions to the enthalpy of vaporization from the molecular liquids to the ionic liquids was established. A small, but not negligible correction term was supposed to reconcile the estimated results with the experiment. The corrected “centerpiece” approach was recommended to predict the vaporization enthalpies of ILs.  相似文献   

6.
咪唑醋酸离子液体在催化、电化学、萃取等领域具有潜在的应用价值,对其热力学性质的深入研究将为其应用提供理论依据。本文采用密度泛函理论(DFT)方法和Born-Fajans-Haber (BFH)循环法对咪唑醋酸离子液体[Cnmim][OAc] (n=1-6)进行热力学性质的理论研究。计算其相变过程中的解离焓、汽化焓、熔化焓、晶格焓、溶解焓等,并与已有实验值进行比较。利用Gaussian 09程序在B3LYP/6-311+G(d, p)和M062X/TZVP两种水平下计算解离焓值,同时通过计算得到分子体积和总气相能的焓修正值,借助Matlab计算软件拟合得到汽化焓值,取得与已有实验值很好的一致性。使用Jenkins公式求得晶格能,计算得到晶格焓,最后利用BFH循环计算得到溶解焓。  相似文献   

7.
It is well known that gas‐phase experiments and computational methods point to the dominance of dispersion forces in the molecular association of hydrocarbons. Estimates or even quantification of these weak forces are complicated due to solvent effects in solution. The dissection of interaction energies and quantification of dispersion interactions is particularly challenging for polar systems such as ionic liquids (ILs) which are characterized by a subtle balance between Coulomb interactions, hydrogen bonding, and dispersion forces. Here, we have used vaporization enthalpies, far‐infrared spectroscopy, and dispersion‐corrected calculations to dissect the interaction energies between cations and anions in aprotic (AILs), and protic (PILs) ionic liquids. It was found that the higher total interaction energy in PILs results from the strong and directional hydrogen bonds between cation and anion, whereas the larger vaporization enthalpies of AILs clearly arise from increasing dispersion forces between ion pairs.  相似文献   

8.
9.
Thermodynamic properties of 3- and 4-phenoxyphenol have been determined by using a combination of calorimetric and effusion techniques as well as by high-level ab initio molecular orbital calculations. The standard (p° = 0.1 MPa) molar enthalpies of formation in the condensed and gas states, Δ(f)H(m)°(cr or l) and Δ(f)H(m)°(g), at T = 298.15 K, of 3- and 4-phenoxyphenol were derived from their energies of combustion in oxygen, measured by a static bomb calorimeter, and from the enthalpies of vaporization or sublimation derived respectively by Calvet microcalorimetry for the 3-phenoxyphenol and by Knudsen effusion technique for the 4-phenoxyphenol. The theoretically estimated gas-phase enthalpies of formation were calculated from high-level ab initio molecular orbital calculations at the G3(MP2)//B3LYP level of theory. Furthermore, this composite approach was also used to obtain information about the gas-phase acidities, gas-phase basicities, proton and electron affinities, adiabatic ionization enthalpies, and, finally, O?H bond dissociation enthalpies. The good agreement between the G3MP2B3-derived values and the experimental gas-phase enthalpies of formation for the 3- and 4-phenoxyphenol gives confidence to the estimate concerning the 2-phenoxyphenol isomer, which was not experimentally studied, and to the estimates concerning the radical and the anion. Additionally, the experimental values of gas-phase enthalpies of formation were also compared with estimates based on the empirical scheme developed by Cox.  相似文献   

10.
11.
In order to better understand the volatilization process for ionic liquids, the vapor evolved from heating the ionic liquid 1-ethyl-3-methylimidazolium bromide (EMIM(+)Br(-)) was analyzed via tunable vacuum ultraviolet photoionization time-of-flight mass spectrometry (VUV-PI-TOFMS) and thermogravimetric analysis mass spectrometry (TGA-MS). For this ionic liquid, the experimental results indicate that vaporization takes place via the evolution of alkyl bromides and alkylimidazoles, presumably through alkyl abstraction via an S(N)2 type mechanism, and that vaporization of intact ion pairs or the formation of carbenes is negligible. Activation enthalpies for the formation of the methyl and ethyl bromides were evaluated experimentally, ΔH(?)(CH(3)Br) = 116.1 ± 6.6 kJ/mol and ΔH(?)(CH(3)CH(2)Br) = 122.9 ± 7.2 kJ/mol, and the results are found to be in agreement with calculated values for the S(N)2 reactions. Comparisons of product photoionization efficiency (PIE) curves with literature data are in good agreement, and ab initio thermodynamics calculations are presented as further evidence for the proposed thermal decomposition mechanism. Estimates for the enthalpy of vaporization of EMIM(+)Br(-) and, by comparison, 1-butyl-3-methylimidazolium bromide (BMIM(+)Br(-)) from molecular dynamics calculations and their gas phase enthalpies of formation obtained by G4 calculations yield estimates for the ionic liquids' enthalpies of formation in the liquid phase: ΔH(vap)(298 K) (EMIM(+)Br(-)) = 168 ± 20 kJ/mol, ΔH(f,?gas)(298 K) (EMIM(+)Br(-)) = 38.4 ± 10 kJ/mol, ΔH(f,?liq)(298 K) (EMIM(+)Br(-)) = -130 ± 22 kJ/mol, ΔH(f,?gas)(298 K) (BMIM(+)Br(-)) = -5.6 ± 10 kJ/mol, and ΔH(f,?liq)(298 K) (BMIM(+)Br(-)) = -180 ± 20 kJ/mol.  相似文献   

12.
The two ionic compounds [Ph4P][NTf2] and Cs[NTf2] were qualified to be suitable liquid materials for different high temperature applications. Development and optimization of these application techniques require knowledge of the thermodynamic properties of vaporization. Vapor pressures and vaporization enthalpies have been measured by using quartz-crystal microbalance. Solubility parameters and miscibility of ionic liquids in practically relevant solvents were assessed.  相似文献   

13.
The present work reports an experimental thermodynamic study of two nitrogen heterocyclic organic compounds, fenclorim and clopyralid, that have been used as herbicides. The sublimation vapor pressures of fenclorim (4,6-dichloro-2-phenylpyrimidine) and of clopyralid (3,6-dichloro-2-pyridinecarboxylic acid) were measured, at different temperatures, using a Knudsen mass-loss effusion technique. The vapor pressures of both crystalline and liquid (including supercooled liquid) phases of fenclorim were also determined using a static method based on capacitance diaphragm manometers. The experimental results enabled accurate determination of the standard molar enthalpies, entropies and Gibbs energies of sublimation for both compounds and of vaporization for fenclorim, allowing a phase diagram representation of the (p,T) results, in the neighborhood of the triple point of this compound. The temperatures and molar enthalpies of fusion of the two compounds studied were determined using differential scanning calorimetry. The standard isobaric molar heat capacities of the two crystalline compounds were determined at 298.15 K, using drop calorimetry. The gas phase thermodynamic properties of the two compounds were estimated through ab initio calculations, at the G3(MP2)//B3LYP level, and their thermodynamic stability was evaluated in the gaseous and crystalline phases, considering the calculated values of the standard Gibbs energies of formation, at 298.15 K. All these data, together with other physical and chemical properties, will be useful to predict the mobility and environmental distribution of these two compounds.  相似文献   

14.
The standard (p 0 = 0.1 MPa) molar enthalpies of formation for the liquid 2,3-dimethylpyrazine and trimethylpyrazine and the crystalline 2,3-dimethylquinoxaline and tetramethylpyrazine were derived from the standard molar enthalpies of combustion, in oxygen, atT=298.15 K, measured by static-bomb combustion calorimetry. The standard molar enthalpies of vaporization or of sublimation for the same compounds were determined by Calvet microcalorimetry. Ab initio full geometry optimization at the 3-21G and 6-31G* levels were also performed for all the methylpyrazine isomers. MP2/RHF/3-21G//3-21G and DFT energies were also calculated for all the methylpyrazine isomers, thus allowing us to estimate their isodesmic resonance energies.  相似文献   

15.
Classical atomistic simulations are used to compute the enthalpy of vaporization of a series of ionic liquids composed of 1-alkyl-3-methylimidazolium cations paired with the bis(trifluoromethylsulfonyl)imide anion. The calculations show that the enthalpy of vaporization is lowest for neutral ion pairs. The enthalpy of vaporization increases by about 40 kJ/mol with the addition of each ion pair to the vaporizing cluster. Non-neutral clusters have much higher vaporization enthalpies than their neutral counterparts and thus are not expected to make up a significant fraction of volatile species. The enthalpy of vaporization increases slightly as the cation alkyl chain length increases and as temperature decreases. The calculated vaporization enthalpies are consistent with two sets of recent experimental measurements as well as with previous atomistic simulations.  相似文献   

16.
Using existing data on the ionization energies of alkali metal atoms in small clusters of water, a thermodynamic cycle is proposed from which the hydration enthalpies of the neutral metal atoms can be estimated. Where comparisons are possible, the results are in reasonable agreement with those obtained using both experimental and ab initio methods. Application of the thermodynamic cycle to neutral alkali metal atoms solvated in ammonia yields solvation enthalpies that are significantly lower than those obtained for water.  相似文献   

17.
This article presents a theoretical study on the oxidation reaction of thiourea by hydrogen peroxide in water or alkaline solutions using density functional and ab initio theories. This work also focuses on the analysis of the thermodynamic and kinetic properties of the predicted oxidation mechanism of thiourea using density functional and ab initio theories. The calculated results show that the activation energies, activation enthalpies, and activation Gibbs free energies of the reaction decreased and the releasable reaction energies, enthalpies and Gibbs free energies increased with the cooperation of water or hydroxyl anion. We conclude that the oxidation reaction of thiourea by hydrogen peroxide in water or alkaline solutions was easier and more completed than that in the gas state. The calculated results are consistent with the experiments.  相似文献   

18.
Potential applications of ionic liquids depend on the properties of this class of liquid material. To a large extent the structure and properties of these Coulomb systems are determined by the intermolecular interactions among anions and cations. In particular the subtle balance between Coulomb forces, hydrogen bonds and dispersion forces is of great importance for the understanding of ionic liquids. The purpose of the present paper is to answer three questions: Do hydrogen bonds exist in these Coulomb fluids? To what extent do hydrogen bonds contribute to the overall interaction between anions and cations? And finally, are hydrogen bonds important for the physical properties of ionic liquids? All these questions are addressed by using a suitable combination of experimental and theoretical methods including newly synthesized imidazolium-based ionic liquids, far infrared spectroscopy, terahertz spectroscopy, DFT calculations, differential scanning calorimetry (DSC), viscometry and quartz-crystal-microbalance measurements. The key statement is that although ionic liquids consist solely of anions and cations and Coulomb forces are the dominating interaction, local and directional interaction such as hydrogen bonding has significant influence on the structure and properties of ionic liquids. This is demonstrated for the case of melting points, viscosities and enthalpies of vaporization. As a consequence, a variety of important properties can be tuned towards a larger working temperature range, finally expanding the range of potential applications.  相似文献   

19.
Ab initio melting curve of copper by the phase coexistence approach   总被引:1,自引:0,他引:1  
Ab initio calculations of the melting properties of copper in the pressure range 0-100 GPa are reported. The ab initio total energies and ionic forces of systems representing solid and liquid copper are calculated using the projector augmented wave implementation of density functional theory with the generalized gradient approximation for exchange-correlation energy. An initial approximation to the melting curve is obtained using an empirical reference system based on the embedded-atom model, points on the curve being determined by simulations in which solid and liquid coexist. The approximate melting curve so obtained is corrected using calculated free energy differences between the reference and ab initio system. It is shown that for system-size errors to be rendered negligible in this scheme, careful tuning of the reference system to reproduce ab initio energies is essential. The final melting curve is in satisfactory agreement with extrapolated experimental data available up to 20 GPa, and supports the validity of previous calculations of the melting curve up to 100 GPa.  相似文献   

20.
The structures, energetics, electronic properties, and spectra of hydrated hydroxide anions are studied using density functional and high level ab initio calculations. The overall structures and binding energies are similar to the hydrated anion clusters, in particular, to the hydrated fluoride anion clusters except for the tetrahydrated clusters and hexahydrated clusters. In tetrahydrated system, tricoordinated structures and tetracoordinated structures are compatible, while in pentahydrated systems and hexahydrated systems, tetracoordinated structures are stable. The hexahydrated system is similar in structure to the hydrated chloride cluster. The thermodynamic quantities (enthalpies and free energies) of the clusters are in good agreement with the experimental values. The electronic properties induced by hydration are similar to hydrated chloride anions. The charge-transfer-to-solvent energies of these hydrated-hydroxide anions are discussed, and the predicted ir spectra are used to explain the experimental data in terms of the cluster structures. The low-energy barriers between the conformations along potential energy surfaces are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号