首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By using the first-principles calculations, the electronic structure and quantum transport properties of metallic carbon nanotubes with B/N pairs co-doping have been investigated. It is shown that the total energies of metallic carbon nanotubes are sensitive to the doping sites of the B/N pairs. The energy gaps of the doped metallic carbon nanotubes decrease with decreasing the concentration of the B/N pair not only along the tube axis but also around the tube. Moreover, the I--V characteristics and transmissions of the doped tubes are studied. Our results reveal that the conducting ability of the doped tube decreases with increasing the concentrations of the B/N pairs due to symmetry breaking of the system. This fact opens a new way to modulate band structures of metallic carbon nanotubes by doping B/N pair with suitable concentration and the novel characteristics are potentially useful in future applications.  相似文献   

2.
Theoretical investigations show that bismuth nanotubes are semiconductors for all diameters,For small diameter bismuth nanotubes,the band structures and bandgaps vary strongly with the strong hybridization effect.When the diameters are larger than 18A,the bandgaps of Bi(n,n) and (n,0) nanotubes approach 0.63eV,corresponding to the bandgap of bismuth sheet at the T point,Thus,bismuth nanotubes are expected to be a potential semiconductor nanomaterial in future nanoelectronics.  相似文献   

3.
Choosing closed-ended armchair (5, 5) single-wall carbon nanotubes (CCNTs) as electrodes, we investigate the electron transport properties across an all-carbon molecular junction consisting of C20 molecules suspended between two semi-infinite carbon nanotubes. It is shown that the conductances are quite sensitive to the number of C20 molecules between electrodes for both configuration CF1 and double-bonded models: the conductances of C20 dimers are markedly smaller than those of monomers. The physics is that incident electrons easily pass the C20 molecules and are predominantly scattered at the C20-C20 junctions. Moreover, we study the doping effect of such molecular junction by doping nitrogen atoms substitutionally. The bonding property of the molecular junction with configuration CF1 has been analysed by calculating the Mulliken atomic charges. Our results have revealed that the C atoms in N-doped junctions are more ionic than those in pure-carbon ones, leading to the fact that N-doped junctions have relatively large conductance.  相似文献   

4.
The elastic properties of anatase nanotubes are investigated by molecular dynamics(MD) simulations. Young's modulus, Poisson ratio, and shear modulus are calculated by transversely isotropic structure model. The calculated elastic constants of bulk rutile, anatase, and Young's modulus of nanotube are in good agreement with experimental values, respectively, demonstrating that the Matsui and Akaogi(MA) potential function used in the simulation can accurately present the elastic properties of anatase titanium dioxide nanotubes. For single wall anatase titanium dioxide nanotube, the elastic moduli are shown to be sensitive to structural details such as the chirality and radius. For different chirality nanotubes with the same radius, the elastic constants are not proportional to the chiral angle. The elastic properties of the nanotubes with the chiral angle of 0° are worse than those of other chiral nanotubes. For nanotubes with the same chirality but different radii, the elastic constant, Young's modulus, and shear modulus decrease as the radius increases. But there exist maximal values in a radius range of 10 nm–15 nm. Such information can not only provide a deep understanding of the influence of geometrical structure on nanotubes mechanical properties, but also present important guidance to optimize the composite behavior by using nanotubes as the addition.  相似文献   

5.
陈丽娟 《中国物理》2006,15(4):798-801
The stability and electronic structure of hypothetical InN nanotubes were studied by first-principles density functional theory. It was found that the strain energies of InN nanotubes are smaller than those of carbon nanotubes of the same radius. Single-wall zigzag InN nanotubes were found to be semiconductors with a direct band gap while the armchair counterparts have an indirect band gap. The band gaps of nanotubes decrease with increasing diameter, similar to the case of carbon nanotubes.  相似文献   

6.
Nb/Al-AlOx/Nb tunnel junctions are often used in the studies of macroscopic quantum phenomena and superconducting qubit applications of the Josephson devices. In this work, we describe a convenient and reliable process using electron beam lithography for the fabrication of high-quality, submicron-sized Nb/Al-AlOx/Nb Josephson junctions. The technique follows the well-known selective Nb etching process and produces high-quality junctions with Vm=100 mV at 2.3 K for the typical critical current density of 2.2 kA/cm^2, which can be adjusted by controlling the oxygen pressure and oxidation time during the formation of the tunnelling barrier. We present the results of the temperature dependence of the sub-gap current and in-plane magnetic-field dependence of the critical current, and compare them with the theoretical predictions.  相似文献   

7.
The continuous-variable (CV) entanglement between two mesoscopic Josephson junctions is studied and the time-dependent characteristic function in Wigner representation for the Josephson junction subsystem driven by a singlemode thermal field is analytically obtained. It is found that an initial lowest energy state of the junction subsystem can evolve into a two-mode entangled Gaussian state through the interaction with the thermal radiation field. Furthermore, we investigate the influence of the temperature on the entanglement of the junctions and find that the CV entanglement of the two junctions shows the critical behavior with respect to the temperature.  相似文献   

8.
Electronic and optical properties of single-walled zinc oxide (ZnO) nanotubes are investigated from the firstprinciples calculations. Electronic structure calculations show that ZnO nanotubes are all direct band gap semiconducting nanotubes and the band gaps are relatively insensitive to the diameter and chirality of tubes. The origin of the common electronic band gaps of ZnO nanotubes is explained in terms of band-folding from the two-dimensional band structure of graphite-like sheet. Moreover, the optical properties such as dielectric function and energy loss function spectra of different ZnO nanotubes are very similar, relatively independent of diameter and chirality of tubes. The calculated dielectric function and loss function spectra show a moderate optical anisotropy with respect to light polarization.  相似文献   

9.
Arrays of FeCo nanotubes are fabricated in the pores of porous anodic aluminium oxide templates. Transmission electron microscopic result shows that the nanotubes are regular and uniform. Magnetic hysteresis loops measured at room temperature are different from those of nanowires with the same composition, which are caused by the unique shape of nanotubes. The M6ssbauer spectra show that the hyperfine field is smaller than that of the bulk's and increases with decrease of measuring temperature. However, the areas of the doublets appeared in M6ssbauer spectra decrease with decrease of measuring temperature.  相似文献   

10.
Mechanism of Carbon Nanotubes Aligning along Applied Electric Field   总被引:1,自引:0,他引:1       下载免费PDF全文
The mechanism of single-walled carbon nanotubes (SWCNTs) aligning in the direction of external electric field is studied by quantum mechanics calculations. The rotational torque on the carbon nanotubes is proportional to the difference between the longitudinal and transverse polarizabilities and varies with the angle of SWCNTs to the external electric field. The longitudinal polarizability increases with second power of length, while the transverse polarizability increases linearly with length. A zigzag SWCNT has larger longitudinal and transverse polarizabilities than an armchair SWCNT with the same diameter and the discrepancy becomes larger for longer tubes.  相似文献   

11.
罗煜聘  田力耕  李明宪  李丰颖 《中国物理 B》2010,19(2):27102-027102
The influencing range of a vacancy defect in a zigzag single-walled nanotube is characterized with both structural deformation and variation in bandstructure. This paper proposes a microscopic explanation to relate the structural deformation to the bandstructure variation. With an increasing defect density, the nanotubes become oblate and the energy gap between the deep localized gap state and the conducting band minimum state decreases. Theoretical results shed some light on the local energy gap engineering via vacancy density for future potential applications.  相似文献   

12.
刘红 《中国物理 B》2010,19(5):57206-057206
This paper studies the quantum conductance properties of three-terminated carbon nanotube Y-junctions, which are built by connecting three (5,5) single-walled carbon nanotubes. The results show that the quantum conductance at the Fermi energy oscillates periodically with the junction's size, and the number of oscillating periodic layers is 3 which is the same as that in the two terminated $(10,0)/m(5,5)/(10,0)$ junctions. Moreover, this Y-junction with different size exhibits obvious different distribution of electron current in the two drain branches, called shunt valve effect of electronic current. Thus the degree of this effect can be controlled and modulated directly by constructing the three branches' sizes or the distribution of defect. The results show in detail that the difference between the two drain currents can be up to two times for some constructions with special sizes. In addition, the uniform distribution of defects in the Y-junction leads to lower quantum conductance than that of other defect configurations.  相似文献   

13.
We fabricate high quality superconductor/ferromagnet/superconductor(SFS) Josephson junctions using epitaxial NbN/Ni_(60)Cu_(40)/NbN trilayer heterostructures. Both experimental measurements and theoretical calculations of the ferromagnet layer thickness dependence of the Josephson critical current are performed. We observe the damped oscillation behavior of the critical current as a function of the ferromagnetic layer thickness at 4.2 K,which shows a 0–π phase transition in this type of magnetic Josephson junction. Clear 0– and reverse –0 phase transitions occur around the Ni_(60)Cu_(40) thicknesses of 3.2 and 6.7 nm. Numerical calculations based on the quasi-classical Usadel equation and the Green function fit well with the experimental results. Compared with the dirty limit, the intermediate regime without the dead layer gives better fit for our SFS Josephson junctions because of the epitaxial structure. Both of the 0-and -phase junctions show the ideal magnetic field dependence with a Fraunhofer-like pattern at 4.2 K.  相似文献   

14.
Nitrogen-doped single-walled carbon nanotubes (CNx-SWNTs) with tunable dopant concentrations were synthesized by chemical vapor deposition (CVD), and their structure and elemental composition were characterized by using transmission electron microscopy (TEM) in combination with electron energy loss spectroscopy (EELS). By comparing the Raman spectra of pristine and doped nanotubes, we observed the doping-induced Raman G band phonon stiffening and 2D band phonon softening, both of which reflect doping-induced renormalization of the electron and phonon energies in the nan- otubes and behave as expected in accord with the n-type doping effect. On the basis of first principles calculations of the distribution of delocalized carrier density in both the pristine and doped nanotubes, we show how the n-type doping occurs when nitrogen heteroatoms are substitutionally incorporated into the honeycomb tube-shell carbon lattice.  相似文献   

15.
We investigate the interaction of single-walled carbon nanotubes (SWCNTs) and methane molecule from the first principles. Adsorption energies are calculated, and methane affinities for the typical semiconducting and metallic nanotubes are compared. We also discuss role of the structural defects and nanotube curvature on the adsorption capability of the SWCNTs. We could observe larger adsorption energies for the metallic CNTs in comparison with the semiconducting CNTs. The obtained results for the zig zag nanotubes with various diameters reveal that the adsorption energy is higher for nanotubes with larger diameters. For defected tubes the adsorption energies are calculated for various configurations such as methane molecule approaching to the defect sites pentagon, hexagon, and heptagon in the tube surface. The results show that the introduce defects have an important contribution to the adsorption mechanism of the methane on SWNTs.  相似文献   

16.
Nb/Al-AlOx/Nb tunnel junctions with controllable critical current density Jc are fabricated using the standard selective Nb etching process.Tunnel barriers are formed in different oxygen exposure conditions (oxygen pressure P and oxidation time t),giving rise to Jc ranging from 100 A/cm2 to above 2000 A/cm2.Jc shows a familiar linear dependence on P × t in logarithmic scales.We calculate the energy levels of the phaseand flux-type qubits using the achievable junction parameters and show that the fabricated Nb/Al-AlOx/Nb tunnel junctions can be used conveniently for quantum computation applications in the future.  相似文献   

17.
We investigate the interactions of charged particles with straight and bent single-walled carbon nanotubes(SWNTs)under channeling conditions in the presence of dynamic polarization of the valence electrons in carbon. This polarization is described by a cylindrical, two-fluid hydrodynamic model with the parameters taken from the recent modelling of several independent experiments on electron energy loss spectroscopy of carbon nano-structures. We use the hydrodynamic model to calculate the image potential for protons moving through four types of SWNTs at a speed of 3 atomic units. The image potential is then combined with the Doyle–Turner atomic potential to obtain the total potential in the bent carbon nanotubes.Using that potential, we also compute the spatial and angular distributions of protons channeled through the bent carbon nanotubes, and compare the results with the distributions obtained without taking into account the image potential.  相似文献   

18.
The application of TiO2-based devices is mainly dependent on their crystalline structure,morphology,size,and exposed facets.Two kinds of TiO2 with different structures,namely TiO2 pompons and TiO2 nanotubes,have been prepared by the hydrothermal method.TiO2 with different structures is characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD),and Brunauer-Emmett-Teller(BET) surface area analysis.Solar cells based on poly(3-hexylthiophene)(P3HT) and TiO2 with different structures are fabricated.In the device ITO/TiO2/P3HT/Au,the P3HT is designed to act as the electron donor,and TiO2 pompons and TiO2 nanotubes act as the electron acceptor.The effects of the TiO2 structure on the performance of hybrid heterojunction solar cells are investigated.The device with TiO2 pompons has an open circuit voltage(Voc) of 0.51 V,a short circuit current(Jsc) of 0.21 mA/cm2,and a fill factor(FF) of 28.3%.Another device with TiO2 nanotubes has a V oc of 0.5 V,J sc of 0.27mA/cm2,and FF of 28.4%.The results indicate that the TiO2 nanotubes with a unidimensional structure have better carrier transport and light absorption properties than TiO 2 pompons.Consequently,the solar cell based on TiO2 nanotubes has a better performance.  相似文献   

19.
This paper applies a density functional theory(DFT) and grand canonical Monte Carlo simulations(GCMC) to investigate the physisorptions of molecular hydrogen in single-walled BC 3 nanotubes and carbon nanotubes.The DFT calculations may provide useful information about the nature of hydrogen adsorption and physisorption energies in selected adsorption sites of these two nanotubes.Furthermore,the GCMC simulations can reproduce their storage capacity by calculating the weight percentage of the adsorbed molecular hydrogen under different conditions.The present results have shown that with both computational methods,the hydrogen storage capacity of BC 3 nanotubes is superior to that of carbon nanotubes.The reasons causing different behaviour of hydrogen storage in these two nanotubes are explained by using their contour plots of electron density and charge-density difference.  相似文献   

20.
Intrinsic Josephson junctions on Bi2Sr2CaCu2O8 δ single crystals are successfully fabricated using photolithography and Ar jon milling .Here we discuss the properties of the surface CuO2/metal bilayers and surface junctions prepared with different crystal cleavage conditions and metal film deposition techniques.We show that,by cleaving the crystal at liquid nitrogen temperature in vacuum,the contents of the (interstitial) oxygen in the Bi-O layers become stable upon cleavage,leading to a CuO2/metal bilayer and to surface junctions with reproducible properites,These results can be useful for practical device fabrications as well as for the studies of the contact properties between high Tc superconductors and normal metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号