首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Excited state electron transfer at the adsorbate/metal interface represents a key step in molecular electronic devices. The dynamics of such processes are governed by ultrafast energy relaxation which can be probed directly by time-resolved two-photon photoemission (2PPE). Using 2PPE spectroscopy we investigate the energetics and lifetimes of the unoccupied electronic states of C6F6 adsorbed on Cu(111) as a model system for electron transfer at organic/metal interfaces. With increasing C6F6 layer thickness we find a pronounced decrease in the energetic position of the lowest unoccupied state, which is accompanied by a strong increase in its lifetime as well as a decrease in the effective electron mass. The frequently employed dielectric continuum model which describes delocalized (quantum well) states within adsorbate layers does not give a consistent explanation of these findings. By adsorption of Xe overlayers onto C6F6/Cu(111) we can show that, even for one monolayer of C6F6, the excited state must be localized predominantly inside the C6F6 layer and thus originates from a molecular state (presumably an antibonding sigma* orbital). With increasing coverage this state becomes more delocalized within the adsorbate layer, which reduces the coupling to the metal substrate and thus enhances the excited state lifetime.  相似文献   

2.
3.
The femtosecond time evolutions of excited states in zinc phthalocyanine (ZnPC) films and at the interface with TiO2(110) have been studied by using time-resolved two-photon photoelectron spectroscopy (TR-2PPE). The excited states are prepared in the first singlet excited state (S1) with excess vibrational energy. Two different films are examined: ultrathin (monolayer) and thick films of approximately 30 A in thickness. The decay behavior depends on the thickness of the film. In the case of the thick film, TR-2PPE spectra are dominated by the signals from ZnPC in the film. The excited states decay with tau = 118 fs mainly by intramolecular vibrational relaxation. After the excited states cascaded down to near the bottom of the S1 manifold, they decay slowly (tau = 56 ps) although the states are located at above the conduction band minimum of the bulk TiO2. The exciton migration in the thick film is the rate-determining step for the electron transfer from the film to the bulk TiO2. In the case of the ultrathin film, the contribution of electron transfer is more evident. The excited states decay faster than those in the thick film, because the electron transfer competes with the intramolecular relaxation processes. The electronic coupling with empty bands in the conduction band of TiO2 plays an important role in the electron transfer. The lower limit of the electron-transfer rate was estimated to be 1/296 fs(-1). After the excited states relax to the states whose energy is below the conduction band minimum of TiO2, they decay much more slowly because the electron-transfer channel is not available for these states.  相似文献   

4.
We present an overview of experimental and theoretical studies of image states dynamics at metal–dielectric interfaces. The interaction of an image-state electron with a metal substrate is largely altered by the presence of a dielectric adlayer. The electron affinity of the adsorbate determines, to a great extent, the evolution of image states upon adsorption. A large variety of adsorbates and surfaces have been studied, from both experimental and theoretical points of view. On the theoretical side, penetration approaches are not able to include all the physics involved in decay processes. A more realistic many-body calculation, which takes into account all the fundamental factors determining the lifetime, has been recently performed, and a fairly good agreement with experiments has been obtained.  相似文献   

5.
A surface femtosecond two-photon photoemission (2PPE) spectrometer devoted to the study of ultrafast excited electron dynamics and photochemical kinetics on metal and metal oxide surfaces has been constructed. Low energy photoelectrons are measured using a hemispheri-cal electron energy analyzer with an imaging detector that allows us to detect the energy and the angular distributions of the photoelectrons simultaneously. A Mach-Zehnder interferom-eter was built for the time-resolved 2PPE (TR-2PPE) measurement to study ultrafast surface excited electron dynamics, which was demonstrated on the Cu(111) surface. A scheme for measuring time-dependent 2PPE (TD-2PPE) spectra has also been developed for studies of surface photochemistry. This technique has been applied to a preliminary study on the photochemical kinetics on ethanol/TiO2(110). We have also shown that the ultrafast dy-namics of photoinduced surface excited resonances can be investigated in a reliable way by combining the TR-2PPE and TD-2PPE techniques.  相似文献   

6.
The binding energies and lifetimes of the n=1 image resonance on Au(111) are measured as a function of n-heptane layer thickness by femtosecond time-resolved two-photon photoemission (TR-2PPE) spectroscopy. The lifetime of the image resonance dramatically increases from approximately 4 fs on clean Au(111) to 1.6 ps with three layers of n-heptane. Because the image resonance is above the L1 band edge of Au, this increase in lifetime is attributed to the tunneling barrier presented by the sigma-sigma* band gap of the n-heptane film. We use the one-dimensional dielectric continuum model (DCM) to approximate the surface potential and to determine the binding energies and the lifetimes of the image resonances. The exact solution of the DCM potential is determined in two ways: the first by wave-packet propagation and the second by using a tight-binding Green's function approach. The first approach allows band-edge effects to be treated. The latter approach is particularly useful in illustrating the similarity between TR-2PPE and conductance measurements.  相似文献   

7.
8.
Intermolecular interaction plays a crucial role in electron solvation in the condensed phase. Here, we present a femtosecond time-resolved and angle-resolved 2-photon photoemission (2PPE) study on the dynamics of electron solvation in a 2-dimensional ammonia film on a metal substrate. While the weakly chemisorbed first monolayer (ML) supports delocalized image-potential (IP) states that resemble those of the bare Ag(111) substrate, an additional monolayer localizes the IP state with a larger binding energy obtained through a pre-solvation process. Structural disorder in the metastable ammonia films (>2 ML) leads to a prominent photoelectron peak that is attributed to the long-lived trapped electron state (e(T)) located at 1.5 eV above the Fermi level. Photoinduced crystallization of the metastable phase, verified by the recovery of a delocalized IP state, is suggested to result from inelastic scattering between interfacial electrons and disordered ammonia molecules.  相似文献   

9.
In this review, we summarize recent progress in experimental approaches to the investigation of the unoccupied electronic structures of organic ultrathin films, based on a combination of spectroscopic and microscopic techniques. At the molecule/substrate interface, electronic structures are greatly affected by the geometrical structures of adsorbed molecules. In addition, a delicate balance between substrate-molecule and intermolecular interactions plays an important role in the formation of complex polymorphism. In this context, we have clarified the correlation between geometric and electronic structures using a combination of two-photon photoemission (2PPE) spectroscopy, low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). Organic ultrathin films of metal phthalocyanines and polycyclic aromatic hydrocarbons (naphthalene, rubrene and perylene) on graphite substrates were examined as model systems. Depending on the substrate temperature and coverage, unique morphologies, including well-ordered films, a metastable phase and a two-dimensional gas-like phase, were determined at the molecular level. The data show that variations in molecular orientation have a significant impact on the occupied/unoccupied electronic structures. In addition to static information regarding electronic states, ultrafast electron excitation and relaxation dynamics can be tracked in real time on the femtosecond scale by time-resolved 2PPE spectroscopy. The excited electron dynamics of rubrene films are discussed herein, taking into account structural information, in the presence and absence of an overlap of the wave function with the substrate. Spatial resolution at the molecular level is also obtainable via STM-based local spectroscopy and mapping, which have been utilized to elucidate the spatial extent of unoccupied orbitals in real space. Visible photon emissions from the unoccupied states of perylene monolayer films were observed using 2PPE, representing a characteristic deexcitation process from electronically excited states, depending on the surface structure. These spectroscopic and molecular level microscopic investigations provide fundamental insights into the electronic properties of organic/substrate interfaces.  相似文献   

10.
The electronic structure of methanol/TiO2(110) interface has been studied by photoemission spectroscopy. The pronounced resonance which appears at 5.5 eV above the Fermi level in two-photon photoemission spectroscopy (2PPE) is associated with the photocatalyzed dissociation of methanol at vefold coordinated Ti sites (Ti5c) on TiO2(110) surface [Chemical Science 1, 575 (2010)]. To check whether this resonance signal arises from initial or intermediate states, photon energy dependent 2PPE and comparison between one-photon photoemission spectroscopy and 2PPE have been performed. Both results consistently suggest the resonance signal originates from the initially unoccupied intermediate states, i.e., excited states. Dispersion measurements suggest the excited state is localized. Time-resolved studies show the lifetime of the excited state is 24 fs. This work presents comprehensive characterization of the excited states on methanol/TiO2(110) interface, and provides elaborate experimental data for the development of theoretical methods in reproducing the excited states on TiO2 surfaces and interfaces.  相似文献   

11.
The electronically excited singlet states of complexes of uracil with one water molecule have been studied theoretically using ab initio multireference configuration interaction methods. In agreement with previous theoretical and experimental results, four cyclic isomers of uracil forming hydrogen bonds with the water molecule have been located with energies within 0.2 eV from the lowest energy isomer. Focus has been given on the mechanism for radiationless decay to the ground state after initial UV absorption and on the effect of complexation with water on previously reported radiationless decay pathways. Features on the excited state potential energy surfaces, such as minima, transition states and conical intersections, have been located for all isomers and compared with those of free uracil. The hydrogen-bonded water molecule changes the relative energies of these features and may lead to different excited state dynamics and lifetimes, in agreement with experimental observations.  相似文献   

12.
《Progress in Surface Science》2007,82(4-6):293-312
The decay rates of electron and hole excitations at metal surfaces as determined by a scanning tunnelling microscope are presented and discussed. Surface-localised electron states as diverse as Shockley-type surface states and quantum well states confined to ultrathin alkali metal adsorption layers are covered. Recent developments in the analysis of the experimental procedures that are used to determine decay rates with the scanning tunnelling microscope, namely the analysis of line shapes and the spatial decay of standing wave patterns, are discussed.  相似文献   

13.
Protective surface layers on AISI 321 stainless steel were prepared by thermal treatments at two different temperatures in air and two controlled atmospheres. Different oxide and/or nitride layers were formed. Surface morphology of the layers was investigated by scanning electron microscopy (SEM). Auger electron spectroscopy (AES) depth profiling of the samples was performed. Since depth profiling suggested layer thicknesses of the order of hundreds of nanometres, an attempt was made to obtain some fast, averaged information about the layer compositions using wavelength dispersive spectroscopy (WDS) at two different beam energies to obtain probing depths best suited to the layer thickness. X‐ray photoelectron spectroscopy (XPS) profiling of one layer was also performed to obtain information about the chemical states of the elements inside the layer. The analysed samples showed considerable differences with respect to their surface morphology, oxide/nitride layer thicknesses, compositions and layer–metal interface thickness. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
采用密度泛函理论(dFT)考察了Pt(100)、(110)、(111)三种表面氢原子的吸附行为, 计算了覆盖度为0.25 ML时氢原子在Pt 三种表面和M-Pt(111)双金属(M=Al, Fe, Co, Ni, Cu, Pd)上的最稳定吸附位、表面能以及吸附前后金属表面原子层间弛豫情况. 分析了氢原子在不同双金属表面吸附前后的局域态密度变化以及双金属表面d 带中心偏离费米能级的程度并与氢吸附能进行了关联. 计算结果表明, 在Pt(100), Pt(110)和Pt(111)表面, 氢原子的稳定吸附位分别为桥位、短桥位和fcc 穴位. 三种表面中以Pt(111)的表面能最低, 结构最稳定. 氢原子在不同M-Pt(111)双金属表面上的最稳定吸附位均为fcc 穴位, 其中在Ni-Pt 双金属表面的吸附能最低, Co-Pt 次之. 表明氢原子在Ni-Pt 和Co-Pt 双金属表面的吸附最稳定. 通过对氢原子在M-Pt(111)双金属表面吸附前后的局域态密度变化的分析, 验证了氢原子吸附能计算结果的准确性. 掺杂金属Ni、Co、Fe 的3d-Pt(111)双金属表面在吸附氢原子后发生弛豫, 第一层和第二层金属原子均不同程度地向外膨胀. 此外, 3d金属的掺入使得其对应的M-Pt(111)双金属表面d带中心与Pt 相比更靠近费米能级, 吸附氢原子能力增强, 表明3d-Pt系双金属表面有可能比Pt具有更好的脱氢活性.  相似文献   

15.
In organics-based (opto)electronic devices, the interface dipoles formed at the organic/metal interfaces play a key role in determining the barrier for charge (hole or electron) injection between the metal electrodes and the active organic layers. The origin of this dipole is rationalized here from the results of a joint experimental and theoretical study based on the interaction between acrylonitrile, a pi-conjugated molecule, and transition metal surfaces (Cu, Ni, and Fe). The adsorption of acrylonitrile on these surfaces is investigated experimentally by photoelectron spectroscopies, while quantum mechanical methods based on density functional theory are used to study the systems theoretically. It appears that the interface dipole formed at an organic/metal interface can be divided into two contributions: (i) the first corresponds to the "chemical" dipole induced by a partial charge transfer between the organic layers and the metal upon chemisorption of the organic molecules on the metal surface, and (ii) the second relates to the change in metal surface dipole because of the modification of the metal electron density tail that is induced by the presence of the adsorbed organic molecules. Our analysis shows that the charge injection barrier in devices can be tuned by modulating various parameters: the chemical potential of the bare metal (given by its work function), the metal surface dipole, and the ionization potential and electron affinity of the organic layer.  相似文献   

16.
TFEL器件中绝缘层与发光层之间的界面对电荷的输运特性、发光特性等有着十分重要的作用。本文通过XPS的测量,分析了新结构器件中SrS/α-SiO~2界面的各成分的芯电子能谱的变化和深度分布,发现Sr^2^+向SiO~2中扩散较深并以氧化物的形态存在,介质层以SiO~x(x=1.65~1.70)的形态存在。这些丰富的界面态有可能成为TFEL器件的初电子源而对SrS:Ce发光有贡献。  相似文献   

17.
The energies, widths, and shapes of features observed in the total energy distributions in field emission from W(1 0 0) and W(1 1 1) are compared with the results of a full-potential LAPW calculation of the surface density of states based on a supercell model of the crystal structure at the metal–vacuum interface. The Swanson hump on W(1 0 0) is attributed to two bands of surface states and surface resonances of dz2 symmetry that are highly localised at , and a second peak observed at lower energy is attributed to a band of surface resonances, also of dz2 symmetry, centred at from along . The energy scale of the calculated total energy distribution is compressed by about 20% relative to the experimental data. The present calculation yields strong evidence that the broad asymmetric peak observed on W(1 1 1) is due to emission from a band of surface resonances. Further calculations for W(1 1 1) are proposed both to test the accuracy of the band model and to take into account the velocity factor that enters in a calculation of the emission current.  相似文献   

18.
Long-wavelength surface and interface phonons have been investigated by high-resolution electron-energy-loss spectroscopy (HREELS) in two heterostructures grown by molecular-beam epitaxy. The first system is a CaF2 insulating layer on Si(1 1 1), while the second consists of GaAs/AlAs superlattices grown on a thick GaAs(0 0 1) substrate. The HREELS experimental results are successfully explained by the dielectric theory, with some refinements brought about by lattice dynamics calculations.  相似文献   

19.
Summary Correlated calculations have been performed for the diatomic second row transition metal hydrides, fluorides, and chlorides. The ground states have been determined for the entire second row from yttrium to palladium. It is found that the halide binding energies vary much more across the row than the hydride binding energies. The results are analyzed in terms of ionic and covalent contributions to the bonding. The two main factors responsible for the large variation of the halide binding energies are differences in ionization energies and differences in the interactions between the halide lone-pairs and the metal 4d-orbitals for the atoms to the left and to the right. To the left the lone-pair interaction is attractive through electron donation to empty 4d-orbitals, whereas to the right the interaction is repulsive.  相似文献   

20.
In this paper we discuss some recent theoretical developments of importance in the area of charge transfer between atoms and surfaces. Using the complex scaling method we have calculated the energy shift and broadening of atomic levels near metal surfaces. Two novel applications will be discussed. The first concerns the interaction of atomic Rydberg levels with clean metal surfaces. It is shown that as Rydberg atoms approach a surface, strong hybridization occurs that depends sensitively on both the atom-surface separation and the details of the surface potential. The widths of the hybridized states can differ by several orders of magnitude depending on their orientation with respect to the surface. The second application is an investigation of how dielectric overlayers adsorbed on metal surfaces can influence the energy shift and broadening of atomic levels. The calculations show that the energies and widths of atomic levels near metal surfaces can be influenced strongly by thin dielectric films adsorbed on the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号