首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The competition of interactions between charged groups of polyanions and polycations and their interaction with small counterions strongly affect the formation and stability of polyelectrolyte multilayers. This has consequences for the properties of polyelectrolyte multilayers like mechanics, polymer mobility and swelling in water.  相似文献   

2.
We investigated the effect of counterion valence on the structure and swelling behavior of polyelectrolyte brushes using a nonlocal density functional theory that accounts for the excluded-volume effects of all ionic species and intrachain and electrostatic correlations. It was shown that charge correlation in the presence of multivalent counterions results in collapse of a polyelectrolyte brush at an intermediate polyion grafting density. At high grafting density, the brush reswells in a way similar to that in a monovalent ionic solution. In the presence of multivalent counterions, the nonmonotonic swelling of a polyelectrolyte brush in response to the increase of the grafting density can be attributed to a competition of the counterion-mediated electrostatic attraction between polyions with the excluded-volume effect of all ionic species. While a polyelectrolyte brush exhibits an "osmotic brush" regime at low salt concentration and a "salted brush" regime at high salt concentration regardless of the counterion valence, we found a smoother transition as the valence of the counterions increases. As observed in recent experiments, a quasi-power-law dependence of the brush thickness on the concentration ratio can be identified when the monovalent counterions are replaced with trivalent counterions at a fixed ionic strength.  相似文献   

3.
Nuclear magnetic resonance (NMR) is a versatile tool for the investigation of structure and molecular mobility in soft mater. It is a standard technique for structure determination of polymers and polyelectrolytes. In addition NMR provides information on both the polyelectrolyte, the counterions and often valuable information originating from the surrounding medium. High-resolution NMR spectroscopy enables the observation of counterion interaction in particular π interactions as well as the information about spatial proximity of functional groups in polyelectrolyte complexes. Combinations of PFG NMR and electrophoresis NMR permit the direct observation of counterion condensation. Cryoporometry showed different states of water interacting with polyelectrolytes in multilayers. Solid-state NMR has been applied to investigate both packing effects and local molecular dynamics in polyelectrolyte multilayers. The current research in the field is reviewed.  相似文献   

4.
In this paper we consider the influence of counterion distribution on the behavior of polyelectrolyte systems. We propose the unified model to describe and to compare the swelling and collapse properties of single polyelectrolyte chains in dilute solutions, microgel particles of various molecular masses, and (as a limiting case) macroscopic gels. A novel feature of the new approach is that we distinguish three possible states of counterions: free counterions inside and outside the polymer macromolecule and a bound state of counterions forming ion pairs with corresponding ions of polymer chains. The latter possibility becomes progressively important when macromolecules or gels shrink. In this case the formation of a supercollapsed state is possible, when all couterions are trapped and form ion pairs. On the other hand, the fact that counterions can float in the outer solution affects essentially the conformation of polyelectrolyte chains in dilute solutions of good quality where practically all counter ions can escape the space inside polymer coils and the repulsion between uncompensated charges plays an important role in the chain behavior.  相似文献   

5.
This study addresses the effect of ionic strength and type of ions on the structure and water content of polyelectrolyte multilayers. Polyelectrolyte multilayers of poly(sodium-4-styrene sulfonate) (PSS) and poly(diallyl dimethyl ammonium chloride) (PDADMAC) prepared at different NaF, NaCl and NaBr concentrations have been investigated by neutron reflectometry against vacuum, H(2)O and D(2)O. Both thickness and water content of the multilayers increase with increasing ionic strength and increasing ion size. Two types of water were identified, "void water" which fills the voids of the multilayers and does not contribute to swelling but to a change in scattering length density and "swelling water" which directly contributes to swelling of the multilayers. The amount of void water decreases with increasing salt concentration and anion radius while the amount of swelling water increases with salt concentration and anion radius. This is interpreted as a denser structure in the dry state and larger ability to swell in water (sponge) for multilayers prepared from high ionic strengths and/or salt solution of large anions. No exchange of hydration water or replacement of H by D was detected even after eight hours incubation time in water of opposing isotopic composition.  相似文献   

6.
The adsorption of sodium poly(4-styrene sulfonate) on oppositely charged beta-FeOOH particles is studied by electrooptics. The focus of this paper is on the release of condensed counterions from adsorbed polyelectrolyte upon surface charge overcompensation. The fraction of condensed Na+ counterions on the adsorbed polyion surface is estimated according to the theory of Sens and Joanny and it is compared with the fraction of condensed counterions on nonadsorbed polyelectrolyte. The relaxation frequency of the electrooptical effect from the polymer-coated particle is found to depend on the polyelectrolyte molecular weight. This is attributed to polarization of the layer from condensed counterions on the polyion surface, being responsible for creation of the effect from particles covered with highly charged polyelectrolyte. The number of the adsorbed chains is calculated also assuming counterion condensation on the adsorbed polyelectrolyte and semiquantative agreement is found with the result obtained from the condensed counterion polarizability of the polymer-coated particle. Our findings are in line with theoretical predictions that the fraction of condensed counterions remains unchanged due to the adsorption of highly charged polyelectrolyte onto weakly charged substrate.  相似文献   

7.
A comparative study of DNA interaction with different counterions in solution has been conducted by the following methods: flow birefringence (FB), low-gradient viscometry, circular dichroism (CD), and UV-spectroscopy. The influence of counterions on the persistence length and polyelectrolyte swelling of DNA has been investigated. The process of DNA packing during the interaction with trivalent ions in solution has been studied, as well as the influence of Mn2+ on the binding of trivalent ions with DNA.  相似文献   

8.
Thin layers of cellulose I nanocrystals were spin-coated onto silicon wafers to give a flat model cellulose surface. A mild heat treatment was required to stabilize the cellulose layer. Interactions of this surface with polyelectrolyte layers and multilayers were probed by atomic force microscopy in water and dilute salt solutions. Deflection–distance curves for standard silicon nitride tips were measured for silicon, cellulose-coated silicon, and for polyelectrolytes adsorbed on the cellulose surface. Transfer of polymer to the tip was checked by running deflection–distance curves against clean silicon. Deflection–distance curves were relatively insensitive to adsorbed polyelectrolyte, but salt addition caused transfer of cationic polyelectrolyte to the tip, and swelling of the polyelectrolyte multilayers.  相似文献   

9.
Hollow polyelectrolyte microcapsules made of poly(allylamine hydrochloride) and sodium poly(styrene sulfonate), templated on various cores, manganese and calcium carbonate particles or polystyrene latexes, were investigated. The polyelectrolyte multilayers respond to a change of pH, leading to a swelling of the capsules in basic conditions and a further shrinking when the pH is reduced to acidic. The nature of the core and the subsequent dissolution process have an influence on this pH responsiveness, and the structuring effect of tetrahydrofuran on the multilayers has been demonstrated. Increasing the molecular weight of the polymers or the number of layers causes also a rigidification of the structure and modifies the pH response.  相似文献   

10.
Viscometric and conductometric measurements have been performed on dilute, salt free solutions of poly(vinyl alcohol) (PVA) and poly(vinyl alcohol, vinyl sulphate ester) copolymer salts in order to get information on transition from a neutral to charged macromolecules. With increasing linear charge density from a very low value to a moderate one a non linear dependence of polyelectrolyte effect on copolymer composition was observed. A comparison has shown that there is a close analogy between the expansion of polyanions and swelling of polyelectrolyte networks at comparable linear charge density range. Due to the intra- and inter-molecular mobile ionic bridges a considerable contraction was pointed out by viscometry for barium, magnesium and copper salts. However, the differences in properties of counterions of higher charge number indicates that in addition to the valency, there is a definite chemical effect, too. It has been revealed by the electric conductance measurements that the transition from a neutral to charged macromolecules could be a very complex one calling for a new and more detailed theoretical consideration of polyelectrolyte solutions.  相似文献   

11.
We have used anionic and cationic single-wall carbon nanotube polyelectrolytes (SWNT-PEs), prepared by the noncovalent adsorption of ionic naphthalene or pyrene derivatives on nanotube sidewalls, for the layer-by-layer self-assembly to prepare multilayers from carbon nanotubes with polycations, such as poly(diallyldimethylammonium) or poly(allylamine hydrochloride) (PDADMA or PAH, respectively), and polyanions (poly(styrenesulfonate), PSS). This is a general and powerful technique for the fabrication of thin carbon nanotube films of arbitrary composition and architecture and allows also an easy preparation of all-SWNT (SWNT/SWNT) multilayers. The multilayers were characterized with vis-near-IR spectroscopy, X-ray photoelectron spectroscopy (XPS), surface plasmon resonance (SPR) measurements, atomic force microscopy (AFM), and imaging ellipsometry. The charge compensation in multilayers is mainly intrinsic, which shows the electrostatic nature of the self-assembly process. The multilayer growth is linear after the initial layers, and in SWNT/polyelectrolyte films it can be greatly accelerated by increasing the ionic strength in the SWNT solution. However, SWNT/SWNT multilayers are much more inert to the effect of added electrolyte. In SWNT/SWNT multilayers, the adsorption results in the deposition of 1-3 theoretical nanotube monolayers per adsorbed layer, whereas the nominal SWNT layer thickness is 2-3 times higher in SWNT/polyelectrolyte films prepared with added electrolyte. AFM images show that the multilayers contain a random network of nanotube bundles lying on the surface. Flexible polyelectrolytes (e.g., PDADMA, PSS) probably surround the nanotubes and bind them together. On macroscopic scale, the surface roughness of the multilayers depends on the components and increases with the film thickness.  相似文献   

12.
As-deposited films of multilayered polyelectrolytes are considered to be non-equilibrium structures. Due to the strong attraction between oppositely charged polyions, polyelectrolyte interdiffusion is thought to be suppressed during the adsorption process. Equilibration is promoted by a decrease of the electrostatic attraction between polyion pairs. We have used neutral impact collision ion scattering spectroscopy to investigate the influence of polyelectrolyte multilayer annealing in water and aqueous 1 M NaCl solutions at different temperatures (20 and 70 degrees C) on the increase in interpenetration of a single polyelectrolyte layer throughout the whole film. The multilayers were composed of poly(4-vinylpyridinium) and poly(4-styrenesulfonate). Contrast between neighboring layers was established by labelling the layer in question with the heavy atom ruthenium. It is found that both temperature and salt increase layer interpenetration, whereas salt has a stronger influence than temperature. From numerical simulations polyelectrolyte diffusion coefficients were evaluated for the different annealing conditions. The influence of temperature and salt on the equilibration of the film is interpreted in terms of increased screening of polyion charges and binding of small counterions to polyion monomeric units.  相似文献   

13.
The build up and electrochemical characterization of interfacial composite nanostructures containing a cationic polyelectrolyte and negatively charged mercaptosuccinic acid stabilized gold nanoparticles (AuNPs) is reported. The nanostructures were formed at the interface between two immiscible electrolyte solutions in which the organic phase is an immobilized 2-nitrophenyl octyl ether/PVC gel. The growth of the multilayer was verified with UV-vis spectra, and approximately a linear increase in UV-vis absorbance with increasing number of layers was observed. The interfacial capacitance of the multilayers was measured as a function of the potential and a theoretical model was developed to explain the results. The excellent agreement between theoretical and experimental capacitance curves allows us to conclude that nanocomposites behave similarly to polyelectrolyte multilayers, with the outmost layer determining the alternating sign of the outer surface charge density. Cyclic voltammograms were used to evaluate the transfer rate constant across the multilayers of a model drug, metoprolol, and the standard probe tetraethylammonium cation. The apparent rate constants were slightly larger than in other studies in the literature and decrease with the increasing number of layers.  相似文献   

14.
We survey recent progress made in the field of polyelectrolyte brushes. These systems consist of long polyelectrolyte chains that are grafted densely to planar or curved surfaces. The main feature of all polyelectrolyte brushes is the strong confinement of the counterions within the brush layer. The high osmotic pressure which is thus built up explains the unusual features of these systems. Here we focus on the most recent experimental developments which are rationalized on the basis of existing theoretical predictions and opens new challenging problems. In particular, we shall discuss briefly the experimental systems used for comparing theory and experiment lately. Moreover, we review various aspects related to the experimental analysis of polyelectrolyte brushes. As a final point, we survey trends in recent applications which demonstrate that polyelectrolyte brushes have an excellent prospect for future nanotechnology.  相似文献   

15.
A quartz crystal microbalance (QCM) and dual polarization interferometry (DPI) have been utilized to study how the structure of poly(allylamine hydrochloride) (PAH)/poly(styrene sulfonate) (PSS) multilayers is affected by the rinsing method (i.e., the termination of polyelectrolyte adsorption). The effect of the type of counterions used in the deposition solution was also investigated, and the polyelectrolyte multilayers were formed in a 0.5 M electrolyte solution (NaCl and KBr). From the measurements, it was observed that thicker layers were obtained when using KBr in the deposition solution than when using NaCl. Three different rinsing protocols have been studied: (i) the same electrolyte solution as used during multilayer formation, (ii) pure water, and (iii) first a salt solution (0.5 M) and then pure water. When the multilayer with PAH as the outermost layer was exposed to pure water, an interesting phenomenon was discovered: a large change in the energy dissipation was measured with the QCM. This could be attributed to the swelling of the layer, and from both QCM and DPI it is obvious that only the outermost PAH layer swells (to a thickness of 25-30 nm) because of a decrease in ionic strength and hence an increase in intra- and interchain repulsion, whereas the underlying layers retain a very rigid and compact structure with a low water content. Interestingly, the outermost PAH layer seems to obtain very similar thicknesses in water independent of the electrolyte used for the multilayer buildup. Another interesting aspect was that the measured thickness with the DPI evaluated by a single-layer model did not correlate with the estimated thickness from the model calculations performed on the QCM-D data. Thus, we applied a two-layer model to evaluate the DPI data and the results were in excellent agreement with the QCM-D results. To our knowledge, this evaluation of DPI data has not been done previously.  相似文献   

16.
The condensation of monovalent counterions and trivalent salt particles around strong rigid and flexible polyelectrolyte chains as well as spherical macroions is investigated by Monte Carlo simulations. The results are compared with the condensation theory proposed by Manning. Considering flexible polyelectrolyte chains, the presence of trivalent salt is found to play an important role by promoting chain collapse. The attraction of counterions and salt particles near the polyelectrolyte chains is found to be strongly dependent on the chain linear charge density with a more important condensation at high values. When trivalent salt is added in a solution containing monovalent salt, the trivalent cations progressively replace the monovalent counterions. Ion condensation around flexible chains is also found to be more efficient compared with rigid rods due to monomer rearrangement around counterions and salt cations. In the case of spherical macroions, it is found that a fraction of their bare charge is neutralized by counterions and salt cations. The decrease of the Debye length, and thus the increase of salt concentration, promotes the attraction of counterions and salt particles at the macroion surface. Excluded volume effects are also found to significantly influence the condensation process, which is found to be more important by decreasing the ion size.  相似文献   

17.
We study the growth and internal structure of polyelectrolyte multilayers obtained by combining three polyanions with nine polycations of the ionene family, of systematically varied chemical architecture. We find that, contrary to a generally held belief, ordered organic multilayers are by no way exceptional, provided one of the polyelectrolytes bears groups which induce structure in water, such as long hydrophobic segments or mesogenic groups. However, this condition is not sufficient, as order will or will not emerge in the multilayer depending on the specific pairing of the polyelectrolytes. The results support the notion that layering in the multilayer results from some degree of prestructuring of a water-swollen layer adsorbed during each step of deposition. These findings pave the way to new possible uses of polyelectrolyte multilayers, for example, for applications requiring preferential alignment or strong confinement of specific functional groups.  相似文献   

18.
The amount of counterions, measured by means of X-ray photoelectron spectroscopy (XPS), in layer-by-layer (LbL) films of poly(allylamine hydrochloride) (PAH) and poly(styrene sulfonate) (PSS), prepared from solutions with various NaCl concentrations, is shown to be greatly influenced by the film drying process: a smaller amount of counterions is observed in films dried after adsorption of each layer, when compared with films that were never dried during the film preparation. This is attributed to the formation of NaCl nanocrystals during the drying process which dissolve when the film is again immersed in the next polyelectrolyte solution. The presence of bonded water molecules was confirmed in wet films indicating that the counterions near the ionic groups are immersed in a water network. The number of counterions is dependent on the amount of salt in polyelectrolyte solutions in such a way that for a concentration of 0.2 M the relative amount of counterions attains saturation for both dried and wet samples, indicating that the process which leads the aggregation of counterions near of the ionic groups is not influenced by the drying process. Moreover, it is proven for wet samples that the increase in salt concentration leads to a decrease in the number of PAH ionized groups as predicted by the Muthukumar theory [J. Chem. Phys. 120 (2004) 9343] accounting for the counterion condensation on flexible polyelectrolytes.  相似文献   

19.
We present a new way to protect polyelectrolyte multilayers from water, consisting in the adsorption and subsequent fusing of charged wax particles atop a multilayer. The formation of the wax layer is demonstrated by different techniques such as ellipsometry, contact angle measurements, and atomic force microscopy. The diffusion of water in protected and unprotected multilayers is studied by in situ neutron reflectometry. Whereas a top layer of wax crystals already allows substantial reduction of the diffusion, the fusion of this top layer leads to the dominating exclusion of water from the multilayers when dipped in water. This method opens up new interesting avenues for polyelectrolyte multilayers in practical applications where permeability of water, ions, or hydrophilic drugs is an issue.  相似文献   

20.
Precise measurements on the electrical conductivity of sodium polystyrenesulfonate in acetonitrile–water-mixed solvent media containing 20 and 40 vol.% of acetonitrile at 308.15, 313.15, and 318.15 K are reported. The mobility of the polyelectrolyte solute was found to be influenced by the polyelectrolyte concentration, the relative permittivity of the medium, and the temperature. The Manning counterion condensation theory for salt-free polyelectrolyte solution failed to describe the experimental results. The data have, therefore, been analyzed on the basis of a new model for semidilute polyelectrolyte conductivity which takes into account the scaling arguments to obtain the fractions of uncondensed counterions which were found to depend on the polyelectrolyte concentration. The effects of the temperature and the relative permittivity of the medium on the equivalent conductivity as well as on the fraction of uncondensed counterions have also been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号