首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The purpose of this study was to develop methods for visualizing the sound radiation from aeroacoustic sources in order to identify their source strength distribution, radiation patterns, and to quantify the performance of noise control solutions. Here, cylindrical Near-field Acoustical Holography was used for that purpose. In a practical holographic measurement of sources comprising either partially correlated or uncorrelated subsources, it is necessary to use a number of reference microphones so that the sound field on the hologram surface can be decomposed into mutually incoherent partial fields before holographic projection. In this article, procedures are described for determining the number of reference microphones required when visualizing partially correlated aeroacoustic sources; performing source nonstationarity compensation; and applying regularization. The procedures have been demonstrated by application to a ducted fan. Holographic tests were performed to visualize the sound radiation from that source in its original form. The system was then altered to investigate the effect of two modifications on the fan's sound radiation pattern: first, leaks were created in the fan and duct assembly, and second, sound absorbing material was used to line the downstream duct section. Results in all three cases are shown at the blade passing frequency and for a broadband noise component. In the absence of leakage, both components were found to exhibit a dipole-like radiation pattern. Leakage was found to have a strong influence on the directivity of the blade passing tone. The increase of the flow resistance caused by adding the acoustical lining resulted in a nearly symmetric reduction of sound radiation.  相似文献   

2.
毕传兴  郭明建  张永斌  徐亮 《物理学报》2012,61(15):154301-154301
采用扫描测量方式得到的不相干声场需分解成完全相干的部分场后才能用于近场声全息重建. 现有的方法都是将声压作为参考进行部分场分解. 本文提出以声压梯度作为参考, 并建立一种基于声压梯度参考的部分场分解方法. 由于声压梯度比声压的衰减速度更快, 受到其他声源和环境噪声的影响比声压小, 所以以声压梯度为参考在分解完全相干的部分场过程中比以声压为参考更具有优势. 通过数值仿真和实验分析, 一方面验证了基于声压梯度参考的部分场分解方法的正确性和可行性; 同时通过与基于声压参考的部分场分解结果比较, 说明了基于声压梯度参考的部分场分解方法分解更稳健、结果更精确.  相似文献   

3.
Pierce's formulation for the diffraction of spherical waves by a hard wedge has been extended to the case of the sound field due to a dipole source. The same approach is also used to extend a semiempirical model for sound propagation above an impedance discontinuity due to a dipole source. The resulting formulas have been validated by comparing their numerical solutions with that computed by summing the sound fields due to two closely spaced monopole sources of equal magnitude but opposite in phase. These new formulations are then used to develop a simple model for calculating the dipole sound field diffracted by a barrier above an impedance ground. Applications of these models relate to transportation noise prediction, particularly railway noise abatement, for which dipole sources are commonly used. The numerical predictions have been found to compare reasonably well with indoor measurements using piezoceramic transducers as dipole sources.  相似文献   

4.
An in situ measurement method is proposed for obtaining the normal surface impedance and absorption coefficient of porous materials using two microphones located close to the material without a specific sound source such as a loudspeaker. Ambient environmental noise that does not excite distinct modes in the sound field is employed as the sound source. Measurements of the normal surface impedance of glass wool and rockwool have been made using this method in various sound fields. The repeatability and wide applicability of the method are demonstrated by comparing results of measurements in one room with different noise conditions and in three other environments (corridor, cafeteria and terrace). The assumed diffuse nature of the sound field on the material is validated by using absorption characteristics obtained experimentally at oblique incidence. This method allows simple and efficient in situ measurements of absorption characteristics of materials in a diffuse field.  相似文献   

5.
声场分离技术及其在近场声全息中的应用   总被引:6,自引:0,他引:6       下载免费PDF全文
于飞  陈剑  李卫兵  陈心昭 《物理学报》2005,54(2):789-797
提出空间声场分离技术,突破了近场声全息(NAH)的应用局限.它们的局限在于全息面一侧的声场必须是自由声场,即要求所有的声源必须位于另一侧.利用波数域内的波场外推理论及声压的标量叠加原理,建立起声场分离技术的双全息面实现方法,利用波数域内的Euler公式及粒子振速的矢量叠加原理,建立起该技术的单全息面实现方法.该技术的一个突出优点是在具有背景噪声的全息测量情况下, 可以消除背景噪声对全息变换结果的影响.理论的推导表明该技术方法的正确性,而仿真算例和实验则显示该技术的可行性和有效性. 关键词: 声全息 波数域 声场分离 背景噪声  相似文献   

6.
Transfer path analysis (TPA) plays an important role for identifying and quantifying the contribution by airborne and structure-borne in the automotive industry. The main bottleneck of the TPA method is the test time consumption and complex procedure. It becomes a key target in many applications to find out the source with dominant contribution to overall noise rather than to identify each source. In recent years the contribution pattern of sources to the vehicle overall interior noise has changed with the reduction of engine noise, which masks all other sources. The panel radiation noise of vehicle body could not be ignored. There is an increasing demand for analyzing the sound quality contribution of sound sources in simple ways. The procedure for analyzing sound quality contribution of panel radiation noise is suggested in this study, in which an operational path analysis (OPA) method combined with partial singular value decomposition (PSVD) analysis is applied and sound quality objective assessment is introduced. The experimental research for verifying the procedure is finished, from which the source with largest sound quality contribution is picked up from three sources. For engineering application, the sound quality contributions of panels to the interior noise of a micro commercial vehicle are analyzed by using the procedure. By investigating the contributions of sound sources to each sound quality attribute, the dominant sound source is determined.  相似文献   

7.
Multireference, scan-based near-field acoustical holography is a useful measurement tool that can be applied when an insufficient number of microphones is available to make measurements on a complete hologram surface simultaneously. The scan-based procedure can be used to construct a complete hologram by joining together subholograms captured using a relatively small, roving scan array and a fixed reference array. For the procedure to be successful, the source levels must remain stationary for the time taken to record the complete hologram; that is unlikely to be the case in practice, however. Usually, the reference signal levels measured during each scan differ from each other with the result that spatial noise is added to the hologram. A procedure to suppress the effects of source level, and hence reference level, variations is proposed here. The procedure is based on a formulation that explicitly features the acoustical transfer functions between the sources and both the reference and scanning, field microphones. When it is assumed that source level changes do not affect the sources' directivity, a nonstationarity compensation procedure can be derived that is based on measured transfer functions between the reference and field microphones. It has been verified both experimentally and in numerical simulations that the proposed procedure can help suppress spatially distributed noise caused by the type of source level nonstationarity that is characteristic of realistic sources.  相似文献   

8.
Several experiments have been performed to investigate the mechanical vibrations associated with an organ pipe. The measurements have been made by using laser Doppler vibrometry, a well-known not-invasive optical measurement technique that is very widely used in structural dynamics. The recorded signals are analyzed by using a well-established decomposition method in time domain, i.e., independent component analysis. Asymptotic dynamics methods to recognize low-dimensional dynamic system associated with this wave field is then considered. The full-toned recorded signals appear decomposed into three independent components. The independent components are nonlinear due to the fractal dimension of the attractor. These results for the mechanic vibrational field are compared with those of the acoustic one. It is interesting to note that the two fields have many common characteristics. Finally, a low-dimensional dynamic system that reproduces the main characteristics of the mechanical wave field in the time and frequency domains is introduced.  相似文献   

9.
Time-of-flight (TOF) measurements are valuable in the estimation of distances, displacements and velocities of moving objects, phase differences of wave pulses, temperature of the atmosphere, and so on. The effects of sound source on time-of-flight measurements have been investigated in this paper. The sound sources considered are: electric horn, impact noise source, aerodynamic noise from a free jet, and the Hartmann whistle. The focus of the present study is to highlight the advantage of using Hartmann whistle for TOF measurements as this device is simple and attractive, without any moving parts. Time-of-flight of sound waves is calculated by cross-correlating the signals received by two microphones. Further, the effect of signal filtering on TOF measurements is demonstrated. The results indicate that the sound source has considerable effect on TOF measurements, and the accuracy can be significantly enhanced by appropriate signal conditioning. Hartmann whistle proves to be a good candidate as an acoustic source for TOF measurement.  相似文献   

10.
Near-field acoustic holography is a measuring process for locating and characterizing stationary sound sources from measurements made by a microphone array in the near-field of the acoustic source plane. A technique called real-time near-field acoustic holography (RT-NAH) has been introduced to extend this method in the case of nonstationary sources. This technique is based on a formulation which describes the propagation of time-dependent sound pressure signals on a forward plane using a convolution product with an impulse response in the time-wavenumber domain. Thus the backward propagation of the pressure field is obtained by deconvolution. Taking the evanescent waves into account in RT-NAH improves the spatial resolution of the solution but makes the deconvolution problem "ill-posed" and often yields inappropriate solutions. The purpose of this paper is to focus on solving this deconvolution problem. Two deconvolution methods are compared: one uses a singular value decomposition and a standard Tikhonov regularization and the other one is based on optimum Wiener filtering. A simulation involving monopoles driven by nonstationary signals demonstrates, by means of objective indicators, the accuracy of the time-dependent reconstructed sound field. The results highlight the advantage of using regularization and particularly in the presence of measurement noise.  相似文献   

11.
The sound power of a number of test objects was determined from spatially averaged intensity measurements. The results show that the influence of room acoustics is insignificant even for rooms of widely different room constants, if the measuring surfaces are exactly defined and if a good space-averaging technique is used. The intensity integrated over a closed surface defining a source-free space compared to the sound pressure integrated over the same surface gives a measure of the capability of a specific intensity measuring system to suppress external noise. For the test arrangements measured with broad band noise, this suppression was found to be 14–18 dB(A). A similar value of 15 dB was found from sound power measurements on a source with high external sound and an analysis of the results in one-third octave bands. From these measurements an analytical function was derived which describes the average error of the spatially averaged intensity as a function of the difference between the external sound level and the source sound level. For practical measurement situations a further analytical function was derived which gives this intensity error as a function of the difference between the measured (spatially averaged) pressure and intensity levels. Thus it is possible to estimate the error of intensity measurements directly from measured intensity and pressure data.  相似文献   

12.
13.
Bessel fringes     
A new family of acousto-optic fringes has been detected in spatially filtered images of sound fields. The fringes identify contours of equal modulation depth. Whole field optical measurements of high frequency sound fields can be made by means of the fringe patterns.  相似文献   

14.
Statistically Optimal Nearfield Acoustical Holography (SONAH) can be used to reconstruct three-dimensional sound fields by projecting two-dimensional data measured on a “small” aperture that partially covers a composite sound source in a “static” fluid medium. Here, an improved SONAH procedure is proposed that includes the mean flow effects of a moving fluid medium while the sound source and receivers are stationary. The backward projection performance of the proposed procedure is further improved by using a wavenumber filter to suppress subsonic noise components. Through numerical simulations at Mach 0.6, it is shown that the improved procedure can accurately reconstruct sound source locations and radiation patterns: e.g., the spatially averaged reconstruction errors of the conventional and improved SONAH procedures are 15.40 dB and 0.19 dB, respectively, for a monopole simulation and 21.60 dB and 0.19 dB for an infinite-size panel. The wavenumber filter further reduces spatial noise, e.g., decreasing the reconstruction error from 1.73 dB to 0.19 dB for the panel simulation. An existing data measured in a wind tunnel operating at Mach 0.12 is reused for the validation. The locations and radiation patterns of the two loudspeakers are successfully identified from the sound fields reconstructed by using the proposed SONAH procedure.  相似文献   

15.
The sound radiated when inflow turbulence is present in axial flow fans has been investigated. Theoretically, two noise radiating mechanisms can be identified: (i) interaction of turbulence with the rotor potential field results in a quadrupole-type volume source distribution, producing “flow-interaction” noise; (ii) impingement of turbulence on the blades results in a dipole-type (fluctuating force) surface source distribution, producing “fluctuating lift” noise. A theoretical expression for the flow interaction sound power in the upstream radiation field has been developed, in terms of parameters that can be experimentally determined by near field flow measurements involving spatial cross-correlations of the fluctuating axial velocity, with respect to both radial and circumferential position. Both these measurements and radiated sound pressure measurements have been made for eight- and ten-bladed rotors of relatively low tip Mach number (< 0·3). The sound pressure measurements revealed the occurrence of band-spreading of discrete tones at the blade passing frequency and its harmonics, as would be theoretically predicted for quadrupole-type sources here. The theoretical predictions and the measurements, respectively, of the sound power radiated upstream were compared. The results indicated that, for the fans tested, the “fluctuating lift” noise strongly predominated over the “flow-interaction” noise. The observed sound power levels were consistent with levels estimated from the theory.  相似文献   

16.
With the aim to propose a reasonable and effective countermeasure for the elevated structure noise, the sound field radiated by a steel plate girder, which is the main source of the elevated structure noise, have been theoretically analysed. In the present study, steel plate girders are modelled as infinitely long elastic plate strips placed in parallel and numerical examples on the sound field radiated by the steel plate girders are shown. In the analysis of the radiated sound field, the equivalent source method is employed. Effect of the surface absorption on the sound field radiated by the girders is discussed through numerical examples. The results show that the surface absorption is effective for reduction of the radiated sound field, especially in the area that increase of sound pressure due to reflection by adjacent plate girders is observed. Furthermore, to design for reasonable countermeasure, variation of the noise reduction effect due to changing the pattern of surface absorption area on plate girders is classified.  相似文献   

17.
Near-field compensated higher order Ambisonics (NFC-HOA) and wave field synthesis (WFS) constitute the two best-known analytic sound field synthesis methods. While WFS is typically used for the synthesis of virtual sound scenes, NFC-HOA is typically employed in order to synthesize sound fields that have been captured with appropriate microphone arrays. Such recorded sound fields are essentially represented by the coefficients of the underlying surface spherical harmonics expansion. A sound field described by such coefficients cannot be straightforwardly synthesized in WFS. This is a consequence of the fact that, unlike in NFC-HOA, it is critical in WFS to carefully select those loudspeakers that contribute to the synthesis of a given sound source in a sound field under consideration. In order to enable such a secondary source selection, it is proposed to employ the well-known concept of decomposing the sound field under consideration into a continuum of plane waves, for which the secondary source selection is straightforward. The plane wave representation is projected onto the horizontal plane and a closed form expression of the secondary source driving signals for horizontal WFS systems of arbitrary convex shape is derived.  相似文献   

18.
Long enclosures are spaces with nondiffuse sound fields, for which the classical theory of acoustics is not appropriate. Thus, the modeling of the sound field in a long enclosure is very different from the prediction of the behavior of sound in a diffuse space. Ray-tracing computer models have been developed for the prediction of the sound field in long enclosures, with particular reference to spaces such as underground stations which are generally long spaces of rectangular or curved cross section. This paper describes the development of a model for use in underground stations of rectangular cross section. The model predicts the sound-pressure level, early decay time, clarity index, and definition at receiver points along the enclosure. The model also calculates the value of the speech transmission index at individual points. Measurements of all parameters have been made in a station of rectangular cross section, and compared with the predicted values. The predictions of all parameters show good agreement with measurements at all frequencies, particularly in the far field of the sound source, and the trends in the behavior of the parameters along the enclosure have been correctly predicted.  相似文献   

19.
An iterative algorithm is developed for the computation of aeroacoustic integrals in the time domain. It is specially designed for the generation of acoustic images, thus giving access to the wavefront pattern radiated by an unsteady flow when large size source fields are considered. It is based on an iterative selection of source-observer pairs involved in the radiation process at a given time-step. It is written as an advanced-time approach, allowing easy connection with flow simulation tools. Its efficiency is related to the fraction of an observer grid step that a sound-wave covers during one time step. Test computations were performed, showing the CPU-time to be 30 to 50 times smaller than with a classical non-iterative procedure. The algorithm is applied to compute the sound radiated by a spatially evolving mixing-layer flow: it is used to compute and visualize contributions to the acoustic field from the different terms obtained by a decomposition of the Lighthill source term.  相似文献   

20.
The rolling noise from tyre–pavement interaction represents the greatest sound contribution from a vehicle when cruising at a high speed. To evaluate the sound levels from this source, existing standardized methods that establish different measurement procedures in both the immediate tyre surroundings, for example the Close-Proximity method, as well as at greater distances, as the Coast-By method. A fundamental parameter that can quantify the sound generation of a source is its sound power level. The standardized methods establish procedures to measure the sound pressure level but not the power level of a tyre as a noise source. For this reason, this paper presents a novel methodology based on sound pressure measurements to obtain the sound power level that a vehicle emits in Coast-By conditions, where noise is generated at tyre/road interaction. The paper describes the testing procedure used to obtain the sound power level, and it is accompanied by a mathematical simulation that studies the feasibility of the proposal. Finally, the proposed methodology is further validated through a field study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号