首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A detection scheme for characterizing high-energy γ-ray pulses down to the zeptosecond timescale is proposed. In contrast to existing attosecond metrology techniques, our method is not limited by atomic shell physics and therefore capable of breaking the MeV photon energy and attosecond time-scale barriers. It is inspired by attosecond streak imaging, but builds upon the high-energy process of electron-positron pair production in vacuum through the collision of a test pulse with an intense laser pulse. We discuss necessary conditions to render the scheme feasible in the upcoming Extreme Light Infrastructure laser facility.  相似文献   

2.
The attosecond laser station(ALS) at the Synergetic Extreme Condition User Facility(SECUF) is a sophisticated and user-friendly platform for the investigation of the electron dynamics in atoms, molecules, and condensed matter on timescales ranging from tens of femtoseconds to tens of attoseconds. Short and tunable coherent extreme-ultraviolet(XUV)light sources based on high-order harmonic generation in atomic gases are being developed to drive a variety of endstations for inspecting and controlling ultrafast electron dynamics in real time. The combination of such light sources and end-stations offers a route to investigate fundamental physical processes in atoms, molecules, and condensed matter. The ALS consists of four beamlines, each containing a light source designed specifically for application experiments that will be performed in its own end-station. The first beamline will produce broadband XUV light for attosecond photoelectron spectroscopy and attosecond transient absorption spectroscopy. It is also capable of performing attosecond streaking to characterize isolated attosecond pulses and will allow studies on the electron dynamics in atoms, moleculars, and condensed matter. The second XUV beamline will produce narrowband femtosecond XUV pulses for time-resolved and angle-resolved photoelectron spectroscopy, to study the electronic dynamics on the timescale of fundamental correlations and interactions in solids, especially in superconductors and topological insulators. The third beamline will produce broadband XUV pulses for attosecond coincidence spectroscopy in a cold-target recoil-ion momentum spectrometer, to study the ultrafast dynamics and reactions in atomic and molecular systems. The last beamline produces broadband attosecond XUV pulses designed for time-resolved photoemission electron microscopy, to study the ultrafast dynamics of plasmons in nanostructures and the surfaces of solid materials with high temporal and spatial resolutions simultaneously. The main object of the ALS is to provide domestic and international scientists with unique tools to study fundamental processes in physics, chemistry,biology, and material sciences with ultrafast temporal resolutions on the atomic scale.  相似文献   

3.
A scheme of a single x-ray attosecond pulse generation from a two-atom system exposed to the combined laser pulses is proposed. Our numerical results show that a single x-ray attosecond pulse rather than a train one can be produced by modulation of ionization. Furthermore, when we change the peak intensity Ih of the high-frequency pulse and keep the intensity of the low-frequency pulse constant, we can find that a range of Ih where the intensity of the attosecond pulse is optimal is available, and a explanation by the stimulated property of the recombination is also presented.  相似文献   

4.
In order to observe the high-field effect, the external laser field must reach its peak intensity before the electron ionization. To this end, it is important to reduce pulse duration to typical attosecond timescale. In this paper, the interaction electron dynamics between attosecond pulses and dielectric is investigated within the time-dependent density functional theory. Taking the CaF2 crystal as an example, we give a comparison of electron dynamics response between single and double pulses. Moreover, the nonlinear energy absorption and electron excitation processes are simulated by adjusting the polarization direction of the sub-pulse. Present results demonstrate that the double pulses show lower electron excitation and energy absorption than the single pulse, which is in accordance with experimental higher ablation threshold and smaller heat-affected zones of the double pulses. In addition, the curves of final excited electron number and energy absorption exhibit the quasi-symmetry about the axis of 180°, which has not been reported yet.  相似文献   

5.
The features of an attosecond extreme ultraviolet (XUV) field are encoded in the attosecond XUV spectrogram. We investigate the effect of the temporal structures of attosecond XUV fields on the attosecond streaking spectrogram. Factors such as the number of attosecond XUV pulses and the temporal chirp of attosecond XUV pulses are considered. Results indicate that unlike the attosecond streaking spectrogram for an attosecond XUV field with two pulses of a half-cycle separation of streaking field, the spectrogram for the attosecond XUV field with three pulses demonstrates fine spectral fringes in separated traces.  相似文献   

6.
We review our recent progress toward attosecond‐precision ultrafast photonics based on ultra‐low timing jitter optical pulse trains from mode‐locked lasers. In femtosecond mode‐locked lasers, the concentration of a large number of photons in an extremely short pulse duration enables the scaling of timing jitter into the attosecond regime. To characterize such jitter levels, we developed new attosecond‐resolution measurement techniques and show that standard fiber lasers can achieve sub‐fs high‐frequency jitter. By leveraging the ultra‐low jitter of free‐running mode‐locked lasers, we pursued high‐precision optical‐optical and optical‐microwave synchronization techniques. Optical signals spanning 1.5 octaves were synthesized by attosecond‐precision timing and phase synchronization of two independent mode‐locked lasers. High‐stability microwave signals were also synthesized from mode‐locked lasers with drift‐free sub‐10‐fs precision. We further demonstrated the attosecond‐precision distribution of optical pulse trains to remote locations via timing‐stabilized fiber links. Finally, the application of optical pulse trains for high‐resolution sampling and analog‐to‐digital conversion is discussed.  相似文献   

7.
马光金  李春来  何进 《强激光与粒子束》2022,34(3):031014-1-031014-10
通过一维粒子模拟研究了利用相对论少周期强激光与固体密度等离子体表面相互作用实现单个孤立阿秒光脉冲产生的参数条件。主要研究描述相互作用的多维参数,如激光强度、入射角和等离子体标尺长度等,对相对论高次谐波能量转换效率和孤立阿秒光脉冲分离度的影响。研究发现,虽然激光等离子体参数对阿秒光脉冲产生的影响是复杂的,但是存在着能够实现大能量孤立阿秒光脉冲的最佳等离子体标尺长度和最佳入射角。当其他相互作用条件确定时,使用中等强度的相对论强激光可以在较宽的参数范围内实现孤立的阿秒光脉冲。大角度入射时,孤立阿秒光脉冲的分离度较高,能够实现孤立阿秒光脉冲的相互作用参数范围也较宽。  相似文献   

8.
The spatio-temporal characterization of an isolated attosecond pulse is investigated theoretically in a two-color field.Our results show that a few-cycle isolated attosecond pulse with the center wavelength of 16 nm can be generated effectively by adding a weak controlling field. Using the split and delay units, the isolated attosecond pulse can be split to the two same ones, and then single-pinhole diffractive patterns of the two pulses with different delays can be achieved. The diffractive patterns depend severely on the periods of the attosecond pulses, which can be helpful to obtain temporal information of the coherent sources.  相似文献   

9.
Lixin He 《中国物理 B》2022,31(12):123301-123301
Three decades ago, a highly nonlinear nonpertubative phenomenon, now well-known as the high harmonic generation (HHG), was discovered when intense laser irradiates gaseous atoms. As the HHG produces broadband coherent radiation, it becomes the most promising source to obtain attosecond pulses. The door to the attosecond science was opened ever since. In this review, we will revisit the incredible adventure to the attoworld. Firstly, the progress of attosecond pulse generation is outlined. Then, we introduce the efforts on imaging the structures or filming the ultrafast dynamics of nuclei and electrons with unprecedented attosecond temporal and Angstrom spatial resolutions, utilizing the obtained attosecond pulses as well as the high harmonic spectrum itself.  相似文献   

10.
A method to characterize attosecond extreme ultra violet (XUV) pulses from photoelectron spectra of atoms is presented. A pump pulse prepares a coherent superposition of two atomic bound states, from which photoionization takes place after variable time delays by the attosecond XUV pulse. Information on the spectral phase of the attosecond XUV pulse is extracted from the analysis of photoelectron spectra as a function of photoelectron energy and time delay. Together with information on the spectral intensity obtained from a separate optical measurement, a temporal shape of the attosecond XUV pulse can be precisely reconstructed. After the theoretical formulation of the problem, we present numerical examples for H atom and show that, depending on the choice of energy separation of two bound states, a different accuracy is reached to characterize attosecond XUV pulses.  相似文献   

11.
阿秒脉冲测量的研究进展   总被引:1,自引:0,他引:1  
霍义萍  曾志男  李儒新 《物理》2004,33(12):907-912
对于发生在原子范围内的电子动力学过程的观测需要阿秒量级的时间分辨率.理论和实验研究都已证明,用周期量级超短脉冲直接泵浦的高次谐波过程可以产生阿秒脉冲序列甚至单个的阿秒脉冲,将阿秒脉冲用于测量超快动力学过程之前先要对阿秒脉冲本身性质做出描述,传统的自相关方法和互相关方法不能直接推广到阿秒量级超短脉冲的测量.文章详细介绍了近几年发展起来的阿秒脉冲测量方法,分析了它们的分辨极限和局限性.  相似文献   

12.
We observe an optical signature induced by the modulation of electron density inside a bulk transparent solid that is quasiperiodically ionized on an attosecond time scale by electric field peaks of a focused few-cycle laser pulse. The emitted optical signal resulting from the attosecond ionization dynamics is spatially, temporally and spectrally isolated from concomitant optical responses through the use of a noncollinear pump-probe technique. The method holds promise for developing an attosecond metrology for bulk solids, in which, unlike in the established attosecond metrology of gases and surfaces, direct detection of charged particles is unfeasible.  相似文献   

13.
Christov IP 《Optics letters》2006,31(2):280-282
A method for reshaping and control of the duration of attosecond x-ray pulses in thin crystals is proposed. The finite width of the reflection and transmission curves around the Bragg angle allows one to engineer Fabry-Perot-type filters for the generation of a large variety of attosecond pulse shapes. The method considered here can be used to manipulate attosecond pulses produced by high-harmonic generation and also for shorter wavelengths for attosecond pulses from x-ray free-electron lasers. X-ray pulses with controllable amplitude and phase may find useful applications in the newly emerging area of attosecond time-resolved spectroscopy.  相似文献   

14.
ABSTRACT

High harmonic generation (HHG) is sensitive to the carrier envelope phase (CEP) of its driving laser field if it is a sufficiently short pulse (several-cycle pulse). Here we show that strong CEP effects can also be found in HHG from long duration multi-cycle pulses (up to 200?fs at 800?nm central wavelength). We find that HHG from multi-cycle pulses may be CEP dependent when the driving pulse exhibits two distinct timescales (multi-timescale pulse): (i) a short timescale associated with the average frequency, and (ii) a long timescale associated with the pulse’s temporal periodicity. The interplay of these timescales results in significant changes to both the cutoff frequency, and the appearance of symmetry allowed harmonics in the spectrum as function of CEP, similar to HHG from several-cycle pulses. We relate this effect to the multi-timescale intensity variations in the driving pulse, and construct an analytical condition to access the phenomenon. Lastly, we numerically demonstrate reconstruction of the CEP through HHG from long duration multi-timescale pulses. Our work may be useful in several areas of strong-field physics and attosecond science, for example, allowing spectroscopy of multi-timescale processes (e.g. HHG from vibrationally active media), and paving the way towards CEP characterisation using long pulses.  相似文献   

15.
罗牧华  张秋菊  闫春燕 《物理学报》2010,59(12):8559-8565
利用一维粒子模拟程序研究了超相对论激光脉冲与稠密等离子体相互作用得到的阿秒脉冲.从超相对论近似的角度分析了电子运动行为和高次谐波的产生,发现当等离子体密度一定时,随着无量纲相似参数S的减小,阿秒脉冲的转换效率呈先增大后减小的趋势,因此选择适当的光强就可以得到转换效率较高的阿秒脉冲.当S一定时,随着等离子体密度的增加,阿秒脉冲转换效率有增大的趋势.这说明用适当的光强照射更稠密度的等离子体靶面,可以产生更强的阿秒脉冲.  相似文献   

16.
脉冲啁啾对于阿秒脉冲的影响   总被引:5,自引:5,他引:0  
采用单电子近似和软核势模型, 通过数值求解一维含时薛定谔方程, 理论研究了当脉冲分别带有正、负啁啾的情况下所产生的阿秒脉冲.分析了不同脉冲啁啾特性对阿秒脉冲的强度和宽度的影响. 研究结果表明, 无论是正啁啾还是负啁啾, 随着啁啾量的增加, 都将使激光脉冲由产生单个阿秒脉冲趋向于产生阿秒脉冲链. 正啁啾和负啁啾对于阿秒脉冲宽度的影响是不同的, 负啁啾对于阿秒脉冲宽度影响很小, 适当的负啁啾有利于缩小阿秒脉冲的宽度; 而正啁啾脉冲产生的阿秒脉冲较无啁啾时展宽, 且随着啁啾量的增加, 其阿秒脉冲宽度迅速增大.  相似文献   

17.
A method to produce circularly polarized attosecond pulses with tunable helicity from CO molecule by using an unidirectionally rotating laser field is proposed. It is found that broadband harmonic supercontinuum with circular polarization can be generated from the oriented CO molecule. This enables the production sub-100 attosecond isolated pulse with the ellipticity as high as 0.9 at the macroscopic level. Moreover, the helicity of the generated high-order harmonics and the attosecond pulse can be tuned by adjusting the orientation of the CO molecule. This method will be beneficial for the studies on chiral-specific dynamics and magnetic circular dichroism on an attosecond time scale.  相似文献   

18.
Z Wang  W Hong  Q Zhang  S Wang  P Lu 《Optics letters》2012,37(2):238-240
The generation of isolated attosecond pulses with high efficiency and high beam quality is essential for attosecond spectroscopy. We numerically investigate the supercontinuum generation in a neutral rare-gas medium driven by a two-color Bessel-Gauss beam. The results show that an efficient smooth supercontinuum in the plateau is obtained after propagation and the spatial profile of the generated attosecond pulse is Gaussian-like with the divergence angle of 0.1° in the far-field. This bright source with high beam quality is beneficial for detecting and controlling the microscopic processes on attosecond time scale.  相似文献   

19.
Huo Y  Zeng Z  Leng Y  Li R  Xu Z  Guo C  Sun Z  Rhee Y 《Optics letters》2005,30(5):564-566
Attosecond-pulse extreme-ultraviolet (XUV) photoionization in a two-color laser field is investigated. Attosecond pulse trains with different numbers of pulses are examined, and their strong dependence on photoelectronic spectra is found. Single-color driving-laser-field-assisted attosecond XUV photoionization cannot determine the number of attosecond pulses from the photoelectronic energy spectrum that are detected orthogonally to the beam direction and the electric field vector of the linearly polarized laser field. A two-color-field-assisted XUV photoionization scheme is proposed for directly determining the number of attosecond pulses from a spectrum detected orthogonally.  相似文献   

20.
The waveforms of attosecond pulses produced by high-harmonic generation carry information on the electronic structure and dynamics in atomic and molecular systems. Current methods for the temporal characterization of such pulses have limited sensitivity and impose significant experimental complexity. We propose a new linear and all-optical method inspired by widely used multidimensional phase retrieval algorithms. Our new scheme is based on the spectral measurement of two attosecond sources and their interference. As an example, we focus on the case of spectral polarization measurements of attosecond pulses, relying on their most fundamental property-being well confined in time. We demonstrate this method numerically by reconstructing the temporal profiles of attosecond pulses generated from aligned CO(2) molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号